<span>1/4(x + 16) - x =
First, distribute the 1/4.
= 1/4x + 1/4 * 16 - x
= 1/4x + 4 - x
= 1/4x + 4 - 4/4x
= 1/4x - 4/4x + 4
= -3/4x + 4

</span>
In an arithmetic sequence:
Tn=t₁+(n-1)d
t₄=t₁+(4-1)d=t₁+3d
t₅=t₁+(5-1)d=t₁+4d
t₆=t₁+(6-1)d=t₁+5d
t₄+t₅+t₆=(t₁+3d) +(t₁+4d)+(t₁+5d)=3t₁+12d
Therefore:
3t₁+12d=300 (1)
t₁₅=t₁+(15-1)d=t₁+14d
t₁₆=t₁+(16-1)d=t₁+15d
t₁₇=t₁+(17-1)d=t₁+16d
t₁₅+t₁₆+t₁₇=(t₁+14d)+(t₁+15d)+(t₁+16d)=3t₁+45d
Therefore:
3t₁+45d=201 (2)
With the equations (1) and (2) we make an system of equations:
3t₁+12d=300
3t₁+45d=201
we can solve this system of equations by reduction method.
3t₁+12d=300
-(3t₁+45d=201)
-----------------------------
-33d=99 ⇒d=99/-33=-3
3t₁+12d=300
3t₁+12(-3)=300
3t₁-36=300
3t₁=300+36
3t₁=336
t₁=336/3
t₁=112
Threfore:
Tn=112+(n-1)(-3)
Tn=112-3n+3
Tn=115-3n
Now, we calculate T₁₈:
T₁₈=115-3(18)=115-54=61
Answer: T₁₈=61
Answer:
-1/9
Step-by-step explanation:

For simplicity, let's multiply top and bottom by 3x:

Factor out a -1:

Divide top and bottom by x−3:

Evaluate the limit:

It's important to note that the function doesn't exist at x = 3. As x <em>approaches</em> 3, the function <em>approaches</em> -1/9.
You times the height,length,and width together and get 168in.3.
Answer:
Step-by-step explanation:
ΔABD ≅ ΔCBD .
So AD = DC
8x - 4 = 3x + 1 {add 4 to both sides}
8x = 3x + 1 + 4
8x = 3x + 5 {subtract 3s from both sides}
8x - 3x= 5
5x = 5 {divide both sides by 5}
x = 5/5
x = 1