Answer:
Acceleration due to gravity is 20
So option (E) will be correct answer
Explanation:
We have given length of the pendulum l = 2 m
Time period of the pendulum T = 2 sec
We have to find acceleration due to gravity g
We know that time period of pendulum is given by



Squaring both side


So acceleration due to gravity is 20
So option (E) will be correct answer.
What is one effect of steroid abuse in professional sports?
AThey cause athletes to stop training hard incorrect answer
BThey allow some competitors to gain an unfair advantage incorrect answer
CThey cause athletes to stop competing to win incorrect answer
DThey cause athletes to become selfish
At the time that I'll call ' Q ', the height of the stone that was
dropped from the tower is
H = 50 - (1/2 G Q²) ,
and the height of the stone that was tossed straight up
from the ground is
H = 20Q - (1/2 G Q²) .
The stones meet when them's heights are equal,
so that's the time when
<span>50 - (1/2 G Q²) = 20Q - (1/2 G Q²) .
This is looking like it's going to be easy.
Add </span><span>(1/2 G Q²) to each side.
Then it says
50 = 20Q
Divide each side by 20: 2.5 = Q .
And there we are. The stones pass each other
2.5 seconds
after they are simultaneously launched.
</span>
12.8 rad
Explanation:
The angular displacement
through which the wheel turned can be determined from the equation below:
(1)
where



Using these values, we can solve for
from Eqn(1) as follows:

or



Answer:
D. 12.4 m
Explanation:
Given that,
The initial velocity of the ball, u = 18 m/s
The angle at which the ball is projected, θ = 60°
The maximum height of the ball is given by the formula
h = u² sin²θ/2g m
Where,
g - acceleration due to gravity. (9.8 m/s)
Substituting the values in the above equation
h = 18² · sin²60 / 2 x 9.8
= 18² x 0.75 / 2 x 9.8
= 12.4 m
Hence, the maximum height of the ball attained, h = 12.4 m