Answer:
The correct answer to the question is
The standard heat of reaction for the reaction is
a. 216.8 kJ released per mole
Explanation:
The heat of reaction is given by [Heat of formation of products] - [Heat of formation of reactants]
In the question we have, heat of formation of the products Zn+2 (aq) = -152.4 kJ/mole and the heat of formation of the reactants = 64.4 kJ/mole
Therefore, the heat of formation of the reaction = (-152-64.4) kJ/mole or
-216.8 kJ/mole released
Answer:
41.63g
Explanation:
Given parameters:
Volume of CaCl₂ = 500mL = 0.5L
Concentration = 0.75mol/L
Unknown:
Mass of the solute needed = ?
Solution:
The mass of the solute can be derived using the expression below;
Mass = number of moles x molar mass
But,
Number of moles = Concentration x Volume
So;
Mass = Concentration x Volume x molar mas
Molar mass of CaCl₂ = 40 + 2(35.5) = 111g/mol
Mass = 0.75 x 0.5 x 111 = 41.63g
Answer:
lattice parameter = 5.3355x10^-8 cm
atomic radius = 2.3103x10^-8 cm
Explanation:
known data:
p=0.855 g/cm^3
atomic mass = 39.09 g/mol
atoms/cell = 2 atoms
Avogadro number = 6.02x10^23 atom/mol
a) the lattice parameter:
Since potassium has a cubic structure, its volume is equal to:
v = [(atoms/cell)x(atomic mass)/(p)x(Avogadro number)]
substituting values:
v =[(2)x(39.09)/(0.855x6.02x10^23)]=1.5189x10^-22 cm^3
but as the cell volume is
a^3 =v
cm
for a BCC structure, the atomic radius is equal to

Answer:
It is not possible to determine the type of chemical reaction that will occur when Ca LiOH → without additional information. The chemical formula Ca LiOH could represent a compound, but without knowing what reactants are present and what products are being formed, it is not possible to classify the reaction. Some possible reactions that could occur involving Ca LiOH include a synthesis reaction, where Ca LiOH is formed from its constituent elements, a decomposition reaction, where Ca LiOH breaks down into its constituent elements, or a substitution reaction, where one or more atoms in Ca LiOH are replaced by other atoms.
Explanation:
Answer:
Stars which never disappear below the horizon are called <u>circumpolar</u> stars.