Gay-Lussac's law gives the relationship between pressure and temperature of gas. For a fixed amount of gas, pressure is directly proportional to temperature at constant volume.
P/T = k
where P - pressure , T - temperature and k - constant

parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
substituting the values in the equation

T = 4342 K
initial temperature was 4342 K
Na₂CO₃(s) → 2Na⁺(aq) + CO₃²⁻(aq)
The sodium carbonate formed from a strong base and a weak acid. Hydrolysis is subjected to the anion of a weak acid.
CO₃²⁻ + H₂O ⇄ HCO₃⁻ + OH⁻
HCO₃⁻ + H₂O ⇄ H₂CO₃ + OH⁻
pH>7 alkaline solution
2Na⁺ + CO₃²⁻ + 2H₂O ⇄ 2Na⁺ + 2OH⁻ + H₂CO₃
Answer:
B
Explanation:
I think that the anserw is B.
So if we use the equation:
→ 
We can then determine the amount of
needed to produce 208 kg of methanol.
So let's find out how many moles of methanol 208 kg is:
Methanol molar weight = 32.041g/mol
So then we can solve for moles of methanol:

So now that we have the amount of moles produced, we can use the molar ratio (from the balanced equation) of hydrogen and methanol. This ratio is 2:1 hydrogen:methanol.
Therefore, we can set up a proportion to solve for the moles of hydrogen needed:


So now that we have the number of moles of
that are produced, we can then use the molar weight of hydrogen to solve for the mass that is needed:

Therefore, the amount of diatomic hydrogen (
) that is needed to produce 208kg of methanol is
g.
Clouds are formed by water then it evaporates into air