The complete balanced chemical
equation is:
4 NH3 (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (g)
In statement form: 4mol NH3 reacts with 5 mol O2 to produce 6
mol H2O
First let us find for the limiting reactant:
>molar mass NH3 = 17 g/mol
moles NH3 = 54/17 = 3.18 mol NH3
This will react with 3.18*5/4 = 3.97 mol O2
>molar mass O2 = 32g/mol
moles O2 = 54/32 = 1.69 mol O2
We have insufficient O2 therefore this is the limiting
reactant
From the balanced equation:
For every 5.0 mol O2, we get 6.0 mol H2O, therefore
moles H2O formed = 1.69
mol O2 * 6/5 = 2.025 mol
Molar mass H2O = 18g/mol
<span>mass H2O formed = 2.025*18 = 36.45 grams H2O produced</span>
Activation energy is the minimum amount of energy that the colliding reactant molecules must possess for the formation of products. Lower the activation energy, higher will be chance of formation of products. So activation energy is the minimum energy requirement that has to overcome for the reaction to be completed. Therefore, when in a chemical reaction the reactant molecules do not collide with required activation energy, the collisions will not be fruitful even if they are properly oriented which means that the products will not form.
Hence the correct answer will be B.) no products will be formed
Chemical properties include reactivity with other elements of substances, toxicity, flammability, and chemical stability
just to name a few
Answer:
only chlorine can expand its octet.
Explanation:
An atom can expand its octet is it has empty d orbital
the electronic configuration of given elements will be:
B : 1s2 2s2 2p1 [Valence shell n =2 no d orbital]
O :1s2 2s2 2p4 [Valence shell n =2 no d orbital]
F : 1s2 2s2 2p5 [Valence shell n =2 no d orbital]
Cl :1s2 2s2 2p6 3s2 3p5 3d0 [Valence shell n =2 no d orbital]
Out of given elements only chlorine has empty d orbitals in its valence shell
Thus only chlorine can expand its octet.