Answer:
Heat or Thermal energy, Solar Energy, Chemical energy, electrical energy, mechanical energy
Explanation:
Answer:
1. Changing Beam Material
2. Corrugation
3. Changing Beam form
4. Steel Reinforcing Bars
Explanation:
Changing Beam Material
Some materials are stronger when used in beams than others. Beams made of steel for instance are stronger than beams made of wood. Therefore changing material can improve the strength of the beam. It is quite important to take into account the weights of the material though as different structures have different requirements.
Corrugation.
You can fold the beam into triangular shapes to increase strength. If you look at roofs you will notice that they are folded and this increased their strength. The same logic can be applied to beams.
Changing Beam Form
Another way to make Beams stronger is to change their form or rather their shape. Straight beams are not as strong as I-beams for instance. I-beams look like the capital letter I with the lines at both ends. I-beams are usually used in construction which shows that they are quite strong.
Steel Reinforcing Bars
When placed in concrete beams, Steel Reinforcing Bars which are also called Rebar can help strengthen a beam by helping it withstand the forces of tension. A concrete beam with Rebar inside it is known as Reinforced Concrete.
Answer: from the Zn anode to the Cu cathode
Justification:
1) The reaction given is: Zn(s) + Cu₂⁺ (aq) -> Zn²⁺ (aq) +Cu(s)
2) From that, you can see the Zn(s) is losing electrons, since it is being oxidized (from 0 to 2⁺), while Cu²⁺, is gaining electrons, since it is being reduced (from 2⁺ to 0).
3) Then, you can already tell that electrons go from Zn to Cu.
4) The plate where oxidation occurs is called anode, and the plate where reduction occus is called cathode.
So you get that the electrons flow from the anode (Zn) to the cathode (Cu).
Always oxidation occurs at the anode, and reduction occurs at the cathode.
Answer:
2 Fe(iii)2O3 + 3 C ==> 2 Fe + 3 CO2
Explanation:
First of all, you have to translate the words into an equation.
Fe(iii)2O3 + C ==> Fe + CO2
The easiest way to tackle this is to start with the Oxygens and balance them. They must balance by going to the greatest common factor which is 6. So you multiply the molecule by whatever it takes to get the Oxygens to 6
2 Fe(iii)2O3 + C ==> Fe + 3 CO2
Now work on the irons. There 2 on the left and just 1 on the right. So you need to multiply the iron by 2.
2 Fe(iii)2O3 + C ==> 2 Fe + 3 CO2
Finally it is the turn of the carbons. There are 3 on the right, so you must make the carbon on the left = 3
2 Fe(iii)2O3 + 3 C ==> 2 Fe + 3 CO2
And you are done.