This problem is providing information about the mass of a tennis ball, 56.6 g (0.0566 kg) and asks for the velocity it will have to equal the wavelength of green light, which is 5400 A or 540 nm (5.4x10⁻⁷ m). Thus, after doing the math, the result is 2.17x10⁻²⁶ m/s.
<h3>
Broglie's wavelength:</h3>
In this case, we recall the formula of the Broglie's wavelength as shown below:

Whereas lambda is the wavelength, h is the Planck's constant, m the mass and v the speed; thus, we solve for the speed according to the question:

<h3>Calculations:</h3>
Then, we just plug in the numbers we were given to get the answer:

Learn more about Broglie's wavelength: brainly.com/question/5440536
Rydberg formula is given by:

where,
= Rydberg constant = 
= wavelength
and
are the level of transitions.
Now, for
= 2 and
= 6

= 
= 
= 
= 

= 
= 
= 
Now, for
= 2 and
= 5

= 
= 
= 

= 
= 
= 
Now, for
= 2 and
= 4

= 
= 
= 

= 
= 
= 
Now, for
= 2 and
= 3

= 
= 
= 

= 
= 
= 
Explanation:
density = mass/volume so volume = mass/density = 40/4.30
Answer:
Using dimensional analysis:
3.01x1022 molecules CO2 x 1 mol CO2/6.02x1023 molecules x 44. g CO2/mole = 2.20 g CO2
Explanation:
Hello!
<span>We have the following statement data:
</span>
Data:




<span>As the percentage is the mole fraction multiplied by 100:
</span>

<span>The mole fraction will be the percentage divided by 100, thus:
</span><span>What is the partial pressure of oxygen in this mixture?
</span>



<span>To calculate the partial pressure of the oxygen gas, it is enough to use the formula that involves the pressures (total and partial) and the fraction in quantity of matter:
</span>
In relation to

:




<span>
Answer:
</span><span>
b. 320.0 mm hg </span>