If two protons are added to carbon, the chemical identity changes to oxygen, which is two spaces over horizontally on the periodic table. The number of protons is what we call the atomic number (Z), and this is what defines the identity of an element. Since we also added two neutrons, this is simply oxygen, or oxygen-16, the most abundant isotope of oxygen.
Answer:
109.7178g of H2O
Explanation:
First let us generate a balanced equation for the reaction. This is illustrated below:
2C3H8O + 9O2 —> 6CO2 + 8H2O
Next we will calculate the molar mass and masses of C3H8O and H20. This is illustrated below:
Molar Mass of C3H8O = (3x12.011) + (8x1.00794) + 15.9994 = 36.033 + 8.06352 + 15.9994 = 60.09592g/mol.
Mass of C3H8O from the balanced equation = 2 x 60.09592 = 120.19184g
Molar Mass of H2O = (2x1.00794) + 15.9994 = 2.01588 + 15.9994 = 18.01528g/mol
Mass of H2O from the balanced equation = 8 x 18.01528 = 144.12224g
From the equation,
120.19184g of C3H8O produced 144.12224g of H20.
Therefore, 91.5g of C3H8O will produce = (91.5 x 144.12224) /120.19184 = 109.7178g of H2O
Answer:
If a solution conducts electricity, it is positive evidence that solute dissolved in solvent is electrolyte.
Answer:
2.52 g NaCl
Explanation:
(Step 1)
To find the mass, you first need to find the moles NaCl. This value can be found using the molarity ratio:
Molarity = moles / volume (L)
After you convert mL to L, you can plug the given values into the equation and simplify to find moles.
136.9 mL / 1,000 = 0.1369 L
Molarity = moles / volume
0.315 M = moles / 0.1369 L
0.0431 = moles
(Step 2)
Now, you can use the molar mass to convert moles to grams.
Molar Mass (NaCl): 22.990 g/mol + 35.453 g/mol
Molar Mass (NaCl): 58.443 g/mol
0.0431 moles NaCl 58.443 g
------------------------------ x ------------------- = 2.52 g NaCl
1 mole
B KOH
I would say this is the base for the compound substance