Explanation:
I can give you some examples;
1) water
2) biomass
3)Soil
4) forest...
I hope this will help you
Answer:
There will be 1.50 gram of water
Answer:
3.6
Explanation:
Step 1: Given data
- Concentration of formic acid: 0.03 M
- Concentration of formate ion: 0.02 M
- Acid dissociation constant (Ka): 1.8 × 10⁻⁴
Step 2: Calculate the pH
We have a buffer system formed by a weak acid (HCOOH) and its conjugate base (HCOO⁻). We can calculate the pH using the <em>Henderson-Hasselbach equation</em>.
![pH = pKa +log\frac{[base]}{[acid]} = -log 1.8 \times 10^{-4} + log \frac{0.02}{0.03} = 3.6](https://tex.z-dn.net/?f=pH%20%3D%20pKa%20%2Blog%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D%20%3D%20-log%201.8%20%5Ctimes%2010%5E%7B-4%7D%20%2B%20log%20%5Cfrac%7B0.02%7D%7B0.03%7D%20%3D%203.6)
Answer:
H2C2O4.2H20 → CO2 + CO + H2O
Explanation:
Oxalic acid crystals are nothing but dehydrated oxalic acid (H2C2O4 . 2H2O).
On heating, the water of crystallization is lost first. Then, the dehydrated oxalic acid decomposes into carbon dioxide(CO2), carbon monoxide(CO) and water(H2O).
Equations involved :
H2C2O4 . 2H2O → H2C2O4 + 2H2O
H2C2O4 → CO2 + HCOOH (FORMIC ACID)
HCOOH → CO + H2O
Overall equation : H2C2O4.2H20 → CO2 + CO + H2O