Answer:
The reactivity of metal is determined by the reactivity series. ... The metal which easily displaced aluminium will lie above in the series but that same element cannot displace sodium, so it will lie below in the series. Hence, from the series, we conclude that the unknown metal could be calcium or magnesium.
Explanation:
Hope this helps! :)
To calculate this, we need the Molarity formula. This formula tell us that Molarity, which is a concentration unit, is equal to the number of moles divided by the volume. In this question we already have the Molarity and the Volume, so let's build our equation:
C = n/V (You can see Molarity with the letter "C" because it means concentration)
3 = n/1
n = 1 * 3
n = 3 moles of NaOH
The condensed formula would be CH3-CH(CH4)-CH2-CH(CH4)-CH2-CH(CH4)-CH3. The molecular formula would be C10H25.
Answer:
Gallon (US) to Milliliter Conversion Table
Gallon (US) [gal (US)] Milliliter [mL]
1 gal (US) 3785.411784 mL
2 gal (US) 7570.823568 mL
3 gal (US) 11356.235352 mL
5 gal (US) 18927.05892 mL
Answer:
The answer to the question is
The pressure of carbon dioxide after equilibrium is reached the second time is 0.27 atm rounded to 2 significant digits
Explanation:
To solve the question, we note that the mole ratio of the constituent is proportional to their partial pressure
At the first trial the mixture contains
3.6 atm CO
1.2 atm H₂O (g)
Total pressure = 3.6+1.2= 4.8 atm
which gives
3.36 atm CO
0.96 atm H₂O (g)
0.24 atm H₂ (g)
That is
CO+H₂O→CO(g)+H₂ (g)
therefore the mixture contained
0.24 atm CO₂ and the total pressure =
3.36+0.96+0.24+0.24 = 4.8 atm
when an extra 1.8 atm of CO is added we get Increase in the mole fraction of CO we have one mole of CO produces one mole of H₂
At equilibrium we have 0.24*0.24/(3.36*0.96) = 0.017857
adding 1.8 atm CO gives 4.46 atm hence we have
(0.24+x)(0.24+x)/(4.46-x)(0.96-x) = 0.017857
which gives x = 0.031 atm or x = -0.6183 atm
Dealing with only the positive values we have the pressure of carbon dioxide = 0.24+0.03 = 0.27 atm