Answer:
Options A and B.
Explanation:
Gravitational acceleration, initial height, intial speed and time are required to determine final speed. The option D is incorrect, since speed varies in time. Option C is dimentionally wrong.
The correct strategy is calculating the initial height from option B. Later, substituting time in equation A to derive an expression of the final velocity in terms of position. Hence, the required equations are options A and B.
Answer:
Reverberation is created when a sound produced in a sapce is reflected off surfaces, like walls, teh floor or the ceiling. ... The time it takes for this sound in the space to decrease in volume down to 60 decibels (practically silence) after the sound source is extinguished is its reverberation time.
Answer:
Final Length = 30 cm
Explanation:
The relationship between the force applied on a string and its stretching length, within the elastic limit, is given by Hooke's Law:
F = kΔx
where,
F = Force applied
k = spring constant
Δx = change in length of spring
First, we find the spring constant of the spring. For this purpose, we have the following data:
F = 50 N
Δx = change in length = 25 cm - 20 cm = 5 cm = 0.05 m
Therefore,
50 N = k(0.05 m)
k = 50 N/0.05 m
k = 1000 N/m
Now, we find the change in its length for F = 100 N:
100 N = (1000 N/m)Δx
Δx = (100 N)/(1000 N/m)
Δx = 0.1 m = 10 cm
but,
Δx = Final Length - Initial Length
10 cm = Final Length - 20 cm
Final Length = 10 cm + 20 cm
<u>Final Length = 30 cm</u>
If the maximum emf of the ac generator is 20 V and the maximum potential difference across the resistor is 16 V Then the maximum potential difference across the inductor is 4 V.
Calculation:
Step-1:
It is given that the RL circuit is connected to a 20 V ac generator. The maximum potential difference across the resistor is 16 V. It is required to find the maximum potential drop across the inductor.
Step-2:
The maximum emf of the generator is equal to the sum of the maximum potential difference across the resistor and the maximum potential difference across the inductor.
Therefore,
The maximum potential difference across the inductor + Maximum maximum potential difference across the resistor = Maximum emf of the generator
Thus,
Maximum maximum potential difference across the inductor + 16 V = 20 V
Therefore,
Maximum maximum potential difference across the inductor = 20 V - 16 V = 4 V
Learn more about potential differences across resistor and inductor here,
brainly.com/question/15715072
#SPJ4
V(voltage) = I(current)R(resistance)
substitute in the values
V = 15 * 0.10
V = 1.5 volts