Answer:
1.86 m
Explanation:
First, find the time it takes to travel the horizontal distance. Given:
Δx = 52 m
v₀ = 26 m/s cos 31.5° ≈ 22.2 m/s
a = 0 m/s²
Find: t
Δx = v₀ t + ½ at²
52 m = (22.2 m/s) t + ½ (0 m/s²) t²
t = 2.35 s
Next, find the vertical displacement. Given:
v₀ = 26 m/s sin 31.5° ≈ 13.6 m/s
a = -9.8 m/s²
t = 2.35 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (13.6 m/s) (2.35 s) + ½ (-9.8 m/s²) (2.35 s)²
Δy = 4.91 m
The distance between the ball and the crossbar is:
4.91 m − 3.05 m = 1.86 m
Answer:
Power of the string wave will be equal to 5.464 watt
Explanation:
We have given mass per unit length is 0.050 kg/m
Tension in the string T = 60 N
Amplitude of the wave A = 5 cm = 0.05 m
Frequency f = 8 Hz
So angular frequency
Velocity of the string wave is equal to
Power of wave propagation is equal to
So power of the wave will be equal to 5.464 watt
Antoine-Laurent Lavoisier was the first person to report the four element classification system but also ended up including some compounds rather than elements.