1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Temka [501]
4 years ago
11

Where was land-dwelling found?

Physics
2 answers:
Sav [38]4 years ago
4 0
Remote Scottish island
Semmy [17]4 years ago
4 0
<span>remote Scottish islands indeed is the answer.</span>
You might be interested in
A train traveling at 25 m/s is blowing its whistle at 440 Hz as it crosses a level crossing. You are waiting at the crossing and
ohaa [14]

Answer:

b) 472HZ, 408HZ

Explanation:

To find the frequencies perceived when the bus approaches and the train departs, you use the Doppler's effect formula for both cases:

f_o=f\frac{v_s+v_o}{v_s-v}\\\\f_o=f'\frac{v_s-v_o}{v_s+v}\\\\

fo: frequency of the source = 440Hz

vs: speed of sound = 343m/s

vo: speed of the observer = 0m/s (at rest)

v: sped of the train

f: frequency perceived when the train leaves us.

f': frequency when the train is getTing closer.

Thus, by doing f and f' the subjects of the formulas and replacing the values of v, vo, vs and fo you obtain:

f=f_o\frac{v_s-v}{v_s+v_o}=(440Hz)\frac{340m/s-25m/s}{340m/s}=408Hz\\\\f'=f_o\frac{v_s+v}{v_s-v_o}=(440Hz)\frac{340m/s+25m/s}{340m/s}=472Hz

hence, the frequencies for before and after tha train has past are

b) 472HZ, 408HZ

6 0
3 years ago
In an "atom smasher," two particles collide head on at relativistic speeds. If the velocity of the first particle is 0.741c to t
galina1969 [7]

Answer:

W_x = 0.9156\ c

Explanation:

given,

velocity of particle 1 = 0.741 c to left

velocity of second particle = 0.543 c to right

relative velocity between the particle = ?

for the relative velocity calculation we have formula

W_x = \dfrac{|u_x - v_x|}{1-\dfrac{u_xv_x}{c^2}}

u_x = 0.543 c

v_x = - 0.741 c

W_x = \dfrac{0.543 c - (-0.741 c)}{1-\dfrac{(0.543 c)(-0.741 c)}{c^2}}

W_x = \dfrac{0.543 c +0.741 c)}{1+\dfrac{(0.543)(0.741)c^2}{c^2}}

W_x = \dfrac{1.284c}{1+0.402363}

W_x = 0.9156\ c

Relative velocity of the particle is W_x = 0.9156\ c

5 0
3 years ago
On a spinning ride at the fair, it is inertia that keeps you moving in a circle. true or false​
lions [1.4K]

False, the inertia does not keep us moving in a circle on a spinning ride at the fair.

Answer: Option B

<u>Explanation: </u>

Inertia is the resisting force of any object which resists in change in their state. If an object is moving the inertia will act in opposing direction to the force acting on the object stopping its motion.

Similarly, if an object resembles at rest, then the inertia will be acting against the force tending to move that stationary object. So, on a spinning ride at fair, when a person sits there, the inertia acting on the person will prevent the person to falling down from the fair and not in moving in a circle.

6 0
3 years ago
A 15-watt bulb is connected to a circuit that has a total of 60. Ω of resistance. How many electrons are passing through that bu
Mariulka [41]

Answer:

3.2075*10^16

Explanation:

Q=P/V just search up a converter and youll get 30V and so you do 15/30 which is a half and a single coulomb is 6.415*10^16 so you half it. I belive this is correct if you dont belive me wait for someone else smarter to answer and compare.

3 0
3 years ago
If stellar parallax can be measured to a precision of about 0.01 arcsec using telescopes on the Earth to observe stars, to what
marin [14]

Answer:

It corresponds to a distance of 100 parsecs away from Earth.

Explanation:

The angle due to the change in position of a nearby object against the background stars it is known as parallax.

It is defined in a analytic way as it follows:

       

\tan{p} = \frac{1AU}{d}

Where d is the distance to the star.

p('') = \frac{1}{d} (1)  

Equation (1) can be rewritten in terms of d:

d(pc) = \frac{1}{p('')} (2)

Equation (2) represents the distance in a unit known as parsec (pc).

The parallax angle can be used to find out the distance by means of triangulation. Making a triangle between the nearby star, the Sun and the Earth (as is shown in the image below), knowing that the distance between the Earth and the Sun (150000000 Km), is defined as 1 astronomical unit (1AU).

For the case of   (p('') = 0.01):

d(pc) = \frac{1}{0.01}

d(pc) = 100

Hence, it corresponds to a distance of 100 parsecs away from Earth.

<em>Summary:</em>

Notice how a small parallax angle means that the object is farther away.

Key terms:

Parsec: Parallax of arc second

7 0
3 years ago
Other questions:
  • Which two elements will most likely form an ionic bond? (Click on the periodic table icon to view these elements) krypton and li
    11·2 answers
  • Work &amp; Power Problems
    14·1 answer
  • If you put a drop of food coloring in water and watch the drop disperse, is entropy increasing or decreasing.
    10·1 answer
  • A 120 g coconut falls 12 m. What is the kinetic energy of the coconut just before it hits the ground?
    13·1 answer
  • Turner's treadmill runs with a velocity of -1.3 m/s and speeds up at regular intervals during a half-hour workout. after 25 min,
    15·2 answers
  • Letícia leaves the grocery store and walks 150.0 m to the parking lot. Then, she turns 90° to the right and walks an additional
    13·1 answer
  • Which is the transfer of thermal energy in matter with no overall transfer of matter? If you copy the answer from the last quest
    7·2 answers
  • WILL MARK BRAINLIEST!!
    9·2 answers
  • What is one advantage of using electromagnets instead of permanent magnets
    7·2 answers
  • The bending of waves such as sound waves, light waves, and waves in water, around obstacles or the edges of openings is called.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!