Answer:
The distance the train travels before coming to a (complete) stop = 40/81 km which is approximately 493.83 meters
Explanation:
The initial speed of the train u = 80 km/h = 22 2/9 m/s = 22.
m/s
The magnitude of the constant acceleration with which the train slows, a = 0.5 m/s²
Therefore, we have the following suitable kinematic equation of motion;
v² = u² - 2 × a × s
Where;
v = The final velocity = 0 (The train comes to a stop)
s = The distance the train travels before coming to a stop
Substituting the values gives;
0² = 22.
² - 2 × 0.5 × s
2 × 0.5 × s = 22.
²
s = 22.
²/1 = 493 67/81 m = 40/81 km
The distance the train travels before coming to a (complete) stop = 40/81 km ≈ 493.83 m.
The specific heat of the substance will be 0.129 J/g°C.
<h3>What is specific heat capacity?</h3>
The amount of heat required to increase a substance's temperature by one degree Celsius is known as specific heat capacity.
Similarly, heat capacity is the relationship between the amount of energy delivered to a substance and the increase in temperature that results.
The given data in the problem is;
Q is the amount of energy necessary to raise the temperature = 3,000.0 j
M is the mass= 0.465 kg.
Δt is the time it takes to raise the temperature.=50°c
s stands for specific heat capacity=?
Mathematically specific heat capacity is given by;

Hence the specific heat of the substance will be 0.129 J/g°C.
To learn more about the specific heat capacity refer to the link brainly.com/question/2530523
-- It takes the brick 8.9 seconds to reach the ground.
-- At the instant of the "splat", it's falling at 89 m/s.
-- The mass doesn't matter. If not for air resistance, every object
would fall at the same rate. The answer is the same for a feather,
a rubber chicken, a brick, or a school bus.