The mass of an object stays the same wherever it is, but its weight can change. This happens if the object goes where the gravitational field strength is different from the gravitational field strength on Earth, such as into space or another planet.
Answer:
ω2 = 216.47 rad/s
Explanation:
given data
radius r1 = 460 mm
radius r2 = 46 mm
ω = 32k rad/s
solution
we know here that power generated by roller that is
power = T. ω ..............1
power = F × r × ω
and this force of roller on cylinder is equal and opposite force apply by roller
so power transfer equal in every cylinder so
( F × r1 × ω1) ÷ 2 = ( F × r2 × ω2 ) ÷ 2 ................2
so
ω2 =
ω2 = 216.47
Answer:
a = v²/r
Explanation:
The acceleration of a body moving in a circular path is known as the centripetal acceleration. This is the acceleration of a body that keeps the body within the circular path. It is written in terms of the linear velocity v and the radius of the circle of rotation as shown;
a = v²/r where
v is the linear velocity
r is the radius
a is the centripetal acceleration
Answer:
1,85 m / s²
Explanation:
De la pregunta anterior, se obtuvieron los siguientes datos:
Velocidad inicial (u) = 40 km / h
Hora inicial (t₁) = 0
Tiempo final (t₂) = 6 s
Velocidad final (v) = 0
Aceleración (a) =?
A continuación, convertiremos 40 km / ha m / s. Esto se puede obtener de la siguiente manera:
1 km / h = 0,2778 m / s
Por lo tanto,
40 km / h = 40 km / h × 0,2778 m / s / 1 km / h
40 km / h = 11,11 m / s
Por tanto, 40 km / h equivalen a 11,11 m / s.
Finalmente, determinaremos la aceleración del móvil durante el período en el que desaceleró. Esto se puede obtener de la siguiente manera:
Velocidad inicial (u) = 11,11 m / s
Hora inicial (t₁) = 0
Tiempo final (t₂) = 6 s
Velocidad final (v) = 0
Aceleración (a) =?
a = (v - u) / (t₂ - t₁)
a = (0 - 11,11) / (6 - 0)
a = - 11,11 / 6
a = –1,85 m / s²
Por tanto, la aceleración del móvil durante el período en el que se ralentizó es de –1,85 m / s²
Answer:
a. 3.07 b. 1.26
Explanation:
Given that A = -3.07i + 3.17j and B = b1i + b1j and C = A + B = 0i + 4.43j
Since A + B = -3.07i + 3.17j + b1i + b2j
= (-3.07 + b1)i + (3.17 + b2)j
So,(-3.07 + b1)i + (3.17 + b2)j = 0i + 4.43j
Comparing components,
-3.07 + b1 = 0 (1) and 3.17 + b2 = 4.43 (2)
a. From (1), b1 = 3.07
b. From(2) b2 = 4.43 - 3.17 = 1.26