Answer:
Christian
Explanation:
Given that
Force applied by Sean ,F₁=100 N
Force applied by Christian ,F₂=200 N
Lets take mass of the box = m kg
As we know that from second law of Newton's
F= m a
F=Force,m=mass ,a=acceleration






From the above we can say that acceleration a₂ is greater than a₁ is for the same mass of the box.
Therefore Christian will acceleration more for the box.
Answer: :) i think its the t
The frequency of the wave is 132 Hz
Explanation:
To calculate the speed of the wave, we can use the following formula:

where
d is the distance travelled by the wave
t is the time elapsed
For the sound wave in this problem, we have:
d = 660 m is the distance travelled
t = 2 s is the time interval considered
Substituting and solving for v, we find the speed of the sound wave:

Now we can calculate the frequency of the wave by using the wave equation:

where
v = 330 m/s is the speed of the wave
is the wavelength
f is the frequency
Solving for f, we find:

Learn more about wavelength and frequency:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly
d = distance the bowling ball has fallen = ?
g = acceleration due to gravity acting on the ball by earth = 9.8 m/s²
t = time of fall for the ball = 3.0 s
distance the ball has fallen is given as
d = (0.5) g t²
inserting the above values in the equation above
d = (0.5) (9.8 m/s²) (3.0 s)²
d = (0.5) (9.8 m/s²) (9.0 s²)
d = (4.9 m/s²) (9.0 s²)
d = 44.1 m
hence the distance fallen by the ball comes out to be 44.1 m