42.9°
Explanation:
Let's assume that the x-axis is aligned with the incline and the positive direction is up the incline. We can then apply Newton's 2nd law as follows:


Note that the net force is zero because the block is moving with a constant speed when the angle of the incline is set at
Solving for the angle, we get

or

![\;\;\;= \sin^{-1}\left[\dfrac{34\:\text{N}}{(5.1\:\text{kg})(9.8\:\text{m/s}^2)}\right]](https://tex.z-dn.net/?f=%5C%3B%5C%3B%5C%3B%3D%20%20%5Csin%5E%7B-1%7D%5Cleft%5B%5Cdfrac%7B34%5C%3A%5Ctext%7BN%7D%7D%7B%285.1%5C%3A%5Ctext%7Bkg%7D%29%289.8%5C%3A%5Ctext%7Bm%2Fs%7D%5E2%29%7D%5Cright%5D)

As the metal expands as does the road bed so neither really effevts those foing over the bridge. as it is hot the metal will expand and so will most tarmac on roads.
The answer to the given statement above would be FALSE. It is not true that chemicals in clouds can cause rainstorms to occur. Rather, rainstorms happen when cumulonimbus clouds are formed. Rainstorms include <span>moisture, unstable air and lift. Hope this answers your question.</span>
You should check A, and D.
Answer:
Sound wave X amplitude is greater than 'A' and its frequency is lesser than
'f'
Explanation:
The pitch of a sound is dictated by the frequency of the sound wave, while the loudness is dictated by the amplitude.
A high pitch sound corresponds to a high frequency and a low pitch sound corresponds to a low frequency.
The larger the amplitude of the waves, the louder the sound and vice-versa.
From the question,
Sound wave W has amplitude ‘A' and frequency 'f' and
Sound wave X is louder and lower in pitch than sound wave W.
Since sound wave X is louder, this means its amplitude is greater than 'A'.
Also, since sound wave X is lower in pitch, this means its frequency is lesser than 'f'.