The mass percent of sulfurous acid in the new solution : 38.9%
<h3>Further explanation</h3>
<em>In a container you have 800 g of a 35% by mass solution of sulfurous acid, from which 80 ml of water evaporates. What is the mass percent of sulfurous acid in the new solution? data: density of water is 1g / ml.</em>
<em />
solution 1
composition :


solution 2(new solution)
composition :

- Total mass of new solution after water evaporated

- %mass of acid in a new solution

I believe the answer is compound B may have a lower molecular weight compared to compound A.
At the same temperature, lighter particles of a compound have a higher average speeds than do heavier particles of another compound. Thus, particles of compound B are lighter than those of compound A and thus they have a higher average speed, hence evaporating faster compared to compound A.
To solve this problem, we must assume ideal gas behaviour so
that we can use Graham’s law:
vA / vB = sqrt (MW_B / MW_A)
where,
<span>vA = speed of diffusion of A (HBR)</span>
vB = speed of diffusion of B (unknown)
MW_B = molecular weight of B (unkown)
MW_A = molar weight of HBr = 80.91 amu
We know from the given that:
vA / vB = 1 / 1.49
So,
1/1.49 = sqrt (MW_B / 80.91)
MW_B = 36.44 g/mol
Since this unknown is also hydrogen halide, therefore this
must be in the form of HX.
HX = 36.44 g/mol , therefore:
x = 35.44 g/mol
From the Periodic Table, Chlorine (Cl) has a molar mass of
35.44 g/mol. Therefore the hydrogen halide is:
HCl
The answer for this question is niche.
Answer:
2H2 + O2 -----> 2H2O
Not sure about the second question though.