PH + pOH = 14
pH = 14 - pOH
pH = 14 - 8.7
pH = 5,3
This solution is <u>acidic</u>.
If pH<7 - acidic
If pH=7 - neutral
If pH>7 - basic
<span>A solution with a pH of 4 has ten times the concentration of H</span>⁺<span> present compared to a solution with a pH of 5.
</span>pH <span>is a numeric scale for the acidity or basicity of an aqueous solution. It is the negative of the base 10 logarithm of the molar concentration of hydrogen ions.
</span>[H⁺] = 10∧-pH.
pH = 4 → [H⁺]₁ = 10⁻⁴ M = 0,0001 M.
pH = 5 → [H⁺]₂ = 10⁻⁵ M = 0,00001 M.
[H⁺]₁ / [H⁺]₂ = 0,0001 M / 0,00001 M.
[H⁺]₁ / [H⁺]₂ = 10.
Answer:
Rate of formation of SO₃
= 7.28 x 10⁻³ M/s
Explanation:
According to equation 2 SO₂(g) + O₂(g) → 2 SO₃(g)
Rate of disappearance of reactants = rate of appearance of products
⇒
-----------------------------(1)
Given that the rate of disappearance of oxygen =
= 3.64 x 10⁻³ M/s
So the rate of formation of SO₃
= ?
from equation (1) we can write
![\frac{d[SO_{3}] }{dt} = 2 [-\frac{d[O_{2}] }{dt} ]](https://tex.z-dn.net/?f=%5Cfrac%7Bd%5BSO_%7B3%7D%5D%20%7D%7Bdt%7D%20%3D%202%20%5B-%5Cfrac%7Bd%5BO_%7B2%7D%5D%20%7D%7Bdt%7D%20%5D)
⇒
= 2 x 3.64 x 10⁻³ M/s
⇒
= 7.28 x 10⁻³ M/s
∴ So the rate of formation of SO₃
= 7.28 x 10⁻³ M/s
Answer: The pair that consists of a base and its conjugate acid in that order.
Explanation:
According to the Bronsted-Lowry conjugate acid-base theory, an acid is defined as a substance which looses donates protons and thus forming conjugate base and a base is defined as a substance which accepts protons and thus forming conjugate acid.



is gaining a proton, thus it is considered as a brønsted-lowry base and after gaining a proton, it forms
which is a conjugate acid.