1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
baherus [9]
3 years ago
11

Solve for X A) 13 B) 5 C) 14 D) 1

Mathematics
1 answer:
Drupady [299]3 years ago
3 0

Answer:

B) 5

Circle is 360 degr. So (21x+9) +(23x-5) +(26x+6)=360

Combine like terms 70x+10=360

Additive inverse -10 from both sides, 70x= 350

Divide both side by 70 division Property of Equality x=5.

Check your answer by substituting 5 back into original solution!

Step-by-step explanation:

You might be interested in
NEED SOME MATH HELP PLEASE
pogonyaev

tan 18 = 120/x

https://www.jiskha.com/questions/644268/From-the-top-of-a-cliff-120-m-above-the-water-the-angle-of-depression-of-a-boat

3 0
3 years ago
The figure shows the letter Z and four of its transformed images—A, B, C, and D:
tiny-mole [99]

Given:

The figure shows the letter Z and four of its transformed images—A, B, C, and D.

To find:

Which of the following rules will transform the pre-image of Z in quadrant 2 into its image in quadrant 1?

Solution:

From the figure it is clear that the pre-image of Z in quadrant 2 and its image in quadrant 1 (image A) are the mirror image of each other along the y-axis.

It means the pre-image of Z in quadrant 2 reflected across the y-axis to get the image in quadrant 1.

If a figure reflected across the y-axis, then rule of transformation is

(x,y)\to (-x,y)

So, the rule (x,y)\to (-x,y) transform the pre-image of Z in quadrant 2 into its image in quadrant 1.

Therefore, the correct option is c.

3 0
3 years ago
Draw an array for the equation 5+5+5=15
kicyunya [14]
•••••
•••••
•••••
I'm not for sure if this is what you meant though sorry
7 0
4 years ago
F(x) = x3 - 2x2 + x - 2
Yuri [45]
Just use photo math
7 0
3 years ago
Solve for x in the equation 2x^2+3x-7=x^2+5x+39
Shalnov [3]
Hey there, hope I can help!

\mathrm{Subtract\:}x^2+5x+39\mathrm{\:from\:both\:sides}
2x^2+3x-7-\left(x^2+5x+39\right)=x^2+5x+39-\left(x^2+5x+39\right)

Assuming you know how to simplify this, I will not show the steps but can add them later on upon request
x^2-2x-46=0

Lets use the quadratic formula now
\mathrm{For\:a\:quadratic\:equation\:of\:the\:form\:}ax^2+bx+c=0\mathrm{\:the\:solutions\:are\:}
x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}

\mathrm{For\:} a=1,\:b=-2,\:c=-46: x_{1,\:2}=\frac{-\left(-2\right)\pm \sqrt{\left(-2\right)^2-4\cdot \:1\left(-46\right)}}{2\cdot \:1}

\frac{-\left(-2\right)+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

Multiply the numbers 2 * 1 = 2
\frac{2+\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2+\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  \sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}

\mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \sqrt{\left(-2\right)^2+1\cdot \:4\cdot \:46} \ \textgreater \  \left(-2\right)^2=2^2, 2^2 = 4

\mathrm{Multiply\:the\:numbers:}\:4\cdot \:1\cdot \:46=184 \ \textgreater \  \sqrt{4+184} \ \textgreater \  \sqrt{188} \ \textgreater \  2 + \sqrt{188}
\frac{2+\sqrt{188}}{2} \ \textgreater \  Prime\;factorize\;188 \ \textgreater \  2^2\cdot \:47 \ \textgreater \  \sqrt{2^2\cdot \:47}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b} \ \textgreater \  \sqrt{47}\sqrt{2^2}

\mathrm{Apply\:radical\:rule}: \sqrt[n]{a^n}=a \ \textgreater \  \sqrt{2^2}=2 \ \textgreater \  2\sqrt{47} \ \textgreater \  \frac{2+2\sqrt{47}}{2}

Factor\;2+2\sqrt{47} \ \textgreater \  Rewrite\;as\;1\cdot \:2+2\sqrt{47}
\mathrm{Factor\:out\:common\:term\:}2 \ \textgreater \  2\left(1+\sqrt{47}\right) \ \textgreater \  \frac{2\left(1+\sqrt{47}\right)}{2}

\mathrm{Divide\:the\:numbers:}\:\frac{2}{2}=1 \ \textgreater \  1+\sqrt{47}

Moving on, I will do the second part excluding the extra details that I had shown previously as from the first portion of the quadratic you can easily see what to do for the second part.

\frac{-\left(-2\right)-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1} \ \textgreater \  \mathrm{Apply\:rule}\:-\left(-a\right)=a \ \textgreater \  \frac{2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)}}{2\cdot \:1}

\frac{2-\sqrt{\left(-2\right)^2-\left(-46\right)\cdot \:1\cdot \:4}}{2}

2-\sqrt{\left(-2\right)^2-4\cdot \:1\cdot \left(-46\right)} \ \textgreater \  2-\sqrt{188} \ \textgreater \  \frac{2-\sqrt{188}}{2}

\sqrt{188} = 2\sqrt{47} \ \textgreater \  \frac{2-2\sqrt{47}}{2}

2-2\sqrt{47} \ \textgreater \  2\left(1-\sqrt{47}\right) \ \textgreater \  \frac{2\left(1-\sqrt{47}\right)}{2} \ \textgreater \  1-\sqrt{47}

Therefore our final solutions are
x=1+\sqrt{47},\:x=1-\sqrt{47}

Hope this helps!
8 0
3 years ago
Read 2 more answers
Other questions:
  • Find the following quantity. Do not round your answers. 42.1% of 375.4 =
    11·2 answers
  • Write x^3/2 in radical form
    13·1 answer
  • You and your friend live 15 miles apart. if both start walking from your homes toward each other at 11:00
    5·1 answer
  • Find the necessary sample size.
    13·1 answer
  • What does "onto itself" mean ​
    9·1 answer
  • 150 divided by 10% pls :)
    8·1 answer
  • Please help. It would be greatly appreciated.
    7·1 answer
  • Can someone plz help plzzzzz
    11·1 answer
  • Pls help thanks :)
    9·1 answer
  • Which of the following describes the transformation?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!