1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korvikt [17]
3 years ago
11

Below are two parallel lines with a third line intersecting them.

Mathematics
1 answer:
lesya [120]3 years ago
6 0

Answer:

x = 77

Step-by-step explanation:

no hablo ingles lo siento

You might be interested in
A study of the amount of time it takes a mechanic to rebuild the transmission for a 1992 Chevrolet Cavalier shows that the mean
Dovator [93]

Answer:

B) 0.0069

Step-by-step explanation:

To solve this question, we need to understand the normal probability distribution and the central limit theorem.

Normal probability distribution

Problems of normally distributed samples are solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

Central Limit Theorem

The Central Limit Theorem estabilishes that, for a normally distributed random variable X, with mean \mu and standard deviation \sigma, the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean \mu and standard deviation s = \frac{\sigma}{\sqrt{n}}.

For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.

In this question, we have that:

\mu = 8.4, \sigma = 1.8, n = 40, s = \frac{1.8}{\sqrt{40}} = 0.2846

Find the probability that their mean rebuild time exceeds 9.1 hours.

This is 1 subtracted by the pvalue of Z when X = 9.1. So

Z = \frac{X - \mu}{\sigma}

By the Central Limit Theorem

Z = \frac{9.1 - 8.4}{0.2846}

Z = 2.46

Z = 2.46 has a pvalue of 0.9931

1 - 0.9931 = 0.0069

So the answer is B.

6 0
3 years ago
FInd the sum of the first 20 terms of the series 3+5+7+....?
melamori03 [73]

Answer:

<em>B.) 440</em>

Explanation:

I added everything together.

3 0
2 years ago
Of the 650 students at west more junior high,4% will receive a perfect attendance award. How many students will receive a perfec
jolli1 [7]

Answer:

26 students

Step-by-step explanation:

4% of 650 is 26

5 0
3 years ago
Read 2 more answers
plz help me now plz: A cable 65 meters long is cut into two pieces so that one piece is 18 meters longer than the other. Find th
GalinKa [24]

Answer:

One piece is 23.5

the other is 41.5

Step-by-step explanation:

first subtract 18 from 65 that will give you 47. Then 47÷2= 23.5. this is the length of the shorter piece. since one piece is 18 m longer then the other, add 18 to 23.5. that will give you the length of the longer piece. You can check your work by adding 23.5 and 41.5. They equal 65.

6 0
3 years ago
keiko david and tony have a total of 106$ in their wallets. david has $6 less than keiko tony has 2 times what david has. how mu
mafiozo [28]
<h3>Answer:</h3>

<em>Keiko have $31 in </em><em>her</em><em> wallet.</em>

<em>David have $25 in his wallet.</em>

<em>Tony have $50 in his wallet.</em>

<h3>Step-by-step explanation:</h3>

<em><u>Keiko</u></em>

<em>Let</em><em> </em><em>x</em><em> </em><em>=</em><em> </em><em>the </em><em>amount</em><em> </em><em>in </em><em>Keiko’</em><em>s</em><em> </em><em>wallet</em><em>.</em>

<em><u>David</u></em>

<em>David</em><em> </em><em>has </em><em>$</em><em>6</em><em> </em><em>less </em><em>than</em><em> </em><em>Keiko</em><em> </em><em>.</em>

<em>x </em><em>-</em><em> </em><em>6</em>

<em><u>Tony</u></em>

<em>Tony</em><em> </em><em>has </em><em>has </em><em>two</em><em> </em><em>times</em><em> </em><em>what</em><em> </em><em>David</em><em> </em><em>has.</em>

<em>2</em><em>(</em><em>x </em><em>-</em><em> </em><em>6</em><em>)</em>

<em>The</em><em> </em><em>total</em><em> sum</em><em> of</em><em> </em><em>their</em><em> </em><em>money</em><em> </em><em>=</em><em> </em><em>1</em><em>0</em><em>6</em>

<em><u>Keiko</u></em>

<em>x </em><em>+</em><em> </em><em>x </em><em>-</em><em> </em><em>6</em><em> </em><em>+</em><em> </em><em>2</em><em>(</em><em>x </em><em>-</em><em> </em><em>6</em><em>)</em><em> </em><em>=</em><em> </em><em>1</em><em>0</em><em>6</em>

<em>2</em><em>x</em><em> </em><em>-</em><em> </em><em>6</em><em> </em><em>+</em><em> </em><em>2</em><em>x</em><em> </em><em>-</em><em> </em><em>1</em><em>2</em><em> </em><em>=</em><em> </em><em>1</em><em>0</em><em>6</em>

<em>4</em><em>x</em><em> </em><em>-</em><em> </em><em>1</em><em>8</em><em> </em><em>=</em><em> </em><em>1</em><em>0</em><em>6</em>

<em>4</em><em>x</em><em> </em><em> </em><em>=</em><em> </em><em>1</em><em>0</em><em>6</em><em> </em><em>+</em><em> </em><em>1</em><em>8</em>

<em>4</em><em>x</em><em> </em><em>/</em><em>4</em><em> </em><em>=</em><em> </em><em>1</em><em>2</em><em>4</em><em>/</em><em>4</em>

<em>x </em><em>=</em><em> </em><em>3</em><em>1</em>

<em>Therefore</em><em> </em><em>Keiko</em><em> </em><em>have</em><em> </em><em>$</em><em>3</em><em>1</em><em> </em><em>in </em><em>her</em><em> </em><em>wallet.</em>

<em> </em>

<em><u>David</u></em>

<em>x </em><em>-</em><em> </em><em>6</em>

<em>3</em><em>1</em><em> </em><em>-</em><em> </em><em>6</em><em> </em><em>=</em><em> </em><em>2</em><em>5</em>

<em>Therefore</em><em> </em><em>David</em><em> </em><em>have</em><em> </em><em>$</em><em>2</em><em>5</em><em> </em><em>in </em><em>his </em><em>wallet</em><em>.</em>

<em><u>Tony</u></em>

<em>2</em><em>(</em><em>x </em><em>-</em><em> </em><em>6</em><em>)</em>

<em>2</em><em>(</em><em>3</em><em>1</em><em> </em><em>-</em><em> </em><em>6</em><em>)</em>

<em>2</em><em>(</em><em>2</em><em>5</em><em>)</em><em> </em><em>=</em><em> </em><em>5</em><em>0</em>

<em>Therefore</em><em> </em><em>Tony </em><em>have</em><em> </em><em>$</em><em>5</em><em>0</em><em> </em><em>in </em><em>his </em><em>wallet</em><em>.</em>

<em>To </em><em>check</em><em> your</em><em> </em><em>work</em><em> </em><em>out</em>

<em>3</em><em>1</em><em> </em><em>+</em><em> </em><em>2</em><em>5</em><em> </em><em>+</em><em> </em><em>5</em><em>0</em><em> </em><em>=</em><em> </em><em>1</em><em>0</em><em>6</em>

4 0
2 years ago
Other questions:
  • If Sachi, Sheryl, Sharon, Shannon, and Stepahnie are all sitting on the backseat of the school bus, in how many different ways c
    5·1 answer
  • What is the volume of this cubic unit object??
    12·2 answers
  • Which inequality can be used to represent this problem? pleaseeeee help
    8·1 answer
  • Martha has $10,000 saved and wants to attend a college with a current tuition of $10,000 a year. She will graduate from high sch
    9·1 answer
  • A Broadway musical was attended by a total of 2,838 people, including men, women, and children. The number of women who attended
    8·1 answer
  • Why are vectors important?
    10·1 answer
  • Help!?Who can help me with this?
    11·1 answer
  • If you rewrote these percents as fractions which one could be written as a whole number over 10? A. 1% B. 5% C.25% D. 40%
    13·1 answer
  • Meena's family took a road trip to Niagara Falls. Meena slept through the last 49% of the trip. If the total length of the trip
    11·1 answer
  • You randomly choose two shapes from the bag, with replacement. Find the probability of choosing two squares. Write your answer a
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!