It would appear Red because as stated above, the paper reflects all the colors of light that fall on it.
Answer:
(c) The planet must have a mass about the same as the mass of Jupiter,
(d) The planet must be closer to the star than Earth is to the Sun.
Explanation:
Astrometry is the ideal method to detect high-mass planets that are close to their star. That is because the gravitational effect that it will have the planet over its host star will be greater. This effect can be seen as a wobble in the star as a consequence of how they orbit a common center of mass¹. The center of mass will be closer to the most massive object, So, in the case of an extrasolar planet with masses like Jupiter (Jovian), this point will be a little bit farther from the star, making the wobble more notable than in a system with a low-mass planet.
Key terms:
Astrometry: study of the position of the stars over time in the sky.
¹Center of mass: a geometrical point in which the mass from a whole system is summed.
Answer:
6.75×10^13N
Explanation:
The electric force between the charges can be determined using coulombs law which states that 'the force of attraction between two charges is directly proportional to the product of the charges and inversely proportional to the square of their distance between them.
Mathematically, F = kq1q2/r² where;
q1 and q2 are the charges
r is the distance between the charges
F is the force of attraction
k is the coulombs constant
Given q1 = 5C q2 = 15C r = 10cm = 0.1m k = 9×10^9Nm²/C²
Substituting the given values in the formula we have;
F =9×10^9×5×15/0.1²
F = 6.75×10^11/0.01
F = 6.75×10^13N
Therefore the electric force between them is 6.75×10^13N
Answer:
-2.25
Real and inverted image
Explanation:
u = Object distance = 16 cm
v = Image distance = 36 cm
f = Focal length
Lens Equation

Focal length of the lens is 11.07 cm. Positive value indicates the lens is a convex lens
Magnification

Since magnification is negative the image inverted