1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
snow_tiger [21]
2 years ago
7

Is it true or false lollll

Mathematics
2 answers:
Reika [66]2 years ago
4 0

Answer:

I think true im sorry if its not

Vikki [24]2 years ago
3 0
Since parallel lines never cross there can be no interception, that is for the system of the graph that has parallel lines. There cannot be no solution this is called inconsistent
You might be interested in
Standardized tests: In a particular year, the mean score on the ACT test was and the standard deviation was . The mean score on
Scorpion4ik [409]

Complete question :

Standardized tests: In a particular year, the mean score on the ACT test was 19.3 and the standard deviation was 5.3. The mean score on the SAT mathematics test was 532 and the standard deviation was 128. The distributions of both scores were approximately bell-shaped. Round the answers to at least two decimal places. Part: 0/4 Part 1 of 4 (a) Find the z-score for an ACT score of 26. The Z-score for an ACT score of 26 is

Answer:

1.26

Step-by-step explanation:

Given that:

For ACT:

Mean score, m = 19.3

Standard deviation, s = 5.3

Zscore for ACT score of 26;

Using the Zscore formula :

(x - mean) / standard deviation

x = 26

Zscore :

(26 - 19.3) / 5.3

= 6.7 / 5.3

= 1.2641509

= 1.26

6 0
3 years ago
Help me on this please
zalisa [80]

Answer:

1. (x, y) → (x + 3, y - 2)

Vertices of the image

a) (-2, - 3)

b) (-2, 3)

c) (2, 2)

2. (x, y) → (x - 3, y + 5)

Vertices of the image

a) (-3, 2)

b) (0, 2)

c) (0, 4)

d) (2, 4)

3. (x, y) → (x + 4, y)

Vertices of the image

a) (-1, -2)

b) (1, -2)

c) (3, -2)

4. (x, y) → (x + 6, y + 1)

Vertices of the image

a) (1, -1)

b) (1, -2)

c) (2, -2)

d) (2, -4)

e) (3, -1)

f) (3, -3)

g) (4, -3)

h) (1, -4)

5. (x, y) → (x, y - 4)

Vertices of the image

a) (0, -2)

b) (0, -3)

c) (2, -2)

d) (2, -4)

6. (x, y) → (x - 1, y + 4)

Vertices of the image

a) (-5, 3)

b) (-5, -1)

c) (-3, 0)

d) (-3, -1)

Explanation:

To identify each <u><em>IMAGE</em></u> you should perform the following steps:

  • List the vertex points of the preimage (the original figure) as ordered pairs.
  • Apply the transformation rule to every point of the preimage
  • List the image of each vertex after applying each transformation, also as ordered pairs.

<u>1. (x, y) → (x + 3, y - 2)</u>

The rule means that every point of the preimage is translated three units to the right and 2 units down.

Vertices of the preimage      Vertices of the image

a) (-5,2)                                   (-5 + 3, -1 - 2) = (-2, - 3)

b) (-5, 5)                                  (-5 + 3, 5 - 2) = (-2, 3)

c) (-1, 4)                                   (-1 + 3, 4 - 2) = (2, 2)

<u>2. (x,y) → (x - 3, y + 5)</u>

The rule means that every point of the preimage is translated three units to the left and five units down.

Vertices of the preimage      Vertices of the image

a) (0, -3)                                   (0 - 3, -3 + 5) = (-3, 2)

b) (3, -3)                                   (3 - 3, -3  + 5) = (0, 2)

c) (3, -1)                                    (3 - 3, -1 + 5) = (0, 4)

d) (5, -1)                                    (5 - 3, -1 + 5) = (2, 4)

<u>3. (x, y) → (x + 4, y)</u>

The rule represents a translation 4 units to the right.

Vertices of the preimage   Vertices of the image

a) (-5, -2)                               (-5 + 4, -2) = (-1, -2)

b) (-3, -5)                               (-3 + 4, -2) = (1, -2)

c) (-1, -2)                                (-1 + 4, -2) = (3, -2)

<u>4. (x, y) → (x + 6, y + 1)</u>

Vertices of the preimage      Vertices of the image

a) (-5, -2)                                  (-5 + 6, -2 + 1) = (1, -1)

b) (-5, -3)                                  (-5 + 6, -3 + 1) = (1, -2)

c) (-4, -3)                                   (-4 + 6, -3 + 1) = (2, -2)

d) (-4, -5)                                  (-4 + 6, -5 + 1) = (2, -4)

e) (-3, -2)                                  (-3 + 6, -2 + 1) = (3, -1)

f) (-3, -4)                                   (-3 + 6, -4 + 1) = (3, -3)

g) (-2, -4)                                  (-2 + 6, -4 + 1) = (4, -3)

h) (-2, -5)                                  (-2 + 3, -5 + 1) = (1, -4)

<u>5. (x, y) → (x, y - 4)</u>

This is a translation four units down

Vertices of the preimage      Vertices of the image

a) (0, 2)                                    (0, 2 - 4) = (0, -2)

b) (0,1)                                      (0, 1 - 4) = (0, -3)

c) (2, 2)                                     (2, 2 - 4) = (2, -2)

d) (2,0)                                     (2, 0 - 4) = (2, -4)

<u>6. (x, y) → (x - 1, y + 4)</u>

This is a translation one unit to the left and four units up.

Vertices of the pre-image     Vertices of the image

a) (-4, -1)                                   (-4 - 1, -1 + 4) = (-5, 3)

b) (-4 - 5)                                  (-4 - 1, -5 + 4) = (-5, -1)

c) (-2, -4)                                  (- 2 - 1, -4 + 4) = (-3, 0)

d) (-2, -5)                                 (-2 - 1, -5 + 4) = (-3, -1)

8 0
3 years ago
Select all ordered pairs that satisfy the function of y=2/3x+1.
kvv77 [185]

Answer:

A.

Step-by-step explanation:

Plugging in all the values into the equation, only A holds a true statement.

5 0
3 years ago
Read 2 more answers
Which equation is correct regarding the diagram of circle O? m∠XZY = (a + b) m∠XZY = (a – b) m∠XOY = (a + b) m∠XOY = (a – b)
4vir4ik [10]

Answer: (B) m∠XZY = 1/2(a - b)

Hope that helps you

3 0
3 years ago
Read 2 more answers
What is the axis of symmetry for the graph of y – 4x = 7 – x2 ?
yKpoI14uk [10]

the axis of symmetry is x=2

8 0
3 years ago
Other questions:
  • What is the slope of y=3x-10
    13·2 answers
  • What is the value of z so that-9 and 9 are both solutions of x^2+z=103?
    14·1 answer
  • A dime has a radius of 8 1/2 millimeters. Find the circumference of a dime to the nearest tenth.
    11·1 answer
  • How I do this need help plzz
    12·1 answer
  • Number 7 I need help
    10·1 answer
  • What is an example of a mathematical equation?
    7·1 answer
  • Compare the process of solving<br> |x - 1 + 1 &lt; 15 to that of solving<br> 1x – 1| + 1 &gt; 15.
    11·1 answer
  • The charges for an international call made using the calling card for two phone companies are shown in the table. a. What is the
    6·1 answer
  • Help and tell me why
    7·1 answer
  • 36 x n = 72 x 7.<br><br><br><br><br> Last question
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!