Answer:
the container is 1/4 full at 9:58 AM
Step-by-step explanation:
since the volume doubles every minute , the formula for calculating the volume V at any time t is
V(t)=V₀*2^-t , where t is in minutes back from 10 AM and V₀= container volume
thus for t=1 min (9:59 AM) the volume is V₁=V₀/2 (half of the initial one) , for t=2 (9:58 AM) is V₂=V₁/2=V₀/4 ...
therefore when the container is 1/4 full the volume is V=V₀/4 , thus replacing in the equation we obtain
V=V₀*2^-t
V₀/4 = V₀*2^-t
1/4 = 2^-t
appling logarithms
ln (1/4) = -t* ln 2
t = - ln (1/4)/ln 2 = ln 4 /ln 2 = 2*ln 2 / ln 2 = 2
thus t=2 min before 10 AM → 9:58 AM
therefore the container is 1/4 full at 9:58 AM
Yes, but your answer will be a decimal, but make sure you check your work and one way you can check your work is by first combing like terms, and then solve it as it is an equation.
Answer:
The measurement of angle B is 135°
The measurement of angle A is 60°
The measurement of angle C is 75°
Step-by-step explanation:
Angle A is the same value of 60, Angle B is pretty much just 180 - 45, and so is angle C.
We solve this by the definition of slope in analytical geometry. The definition of slope is the rise over run. In equation, that would be
m = Δy/Δx = (y₂-y₁)/(x₂-x₁)
The x-coordinates here are the t values, while the y-coordinates are the f(t) values. So, let's find the y values of the boundaries.
At t=2: f(t)= 0.25(2)²<span> − 0.5(2) + 3.5 = 3.5
Point 1 is (2, 3.5)
At t=6: </span>f(t)= 0.25(6)² − 0.5(6) + 3.5 = 9.5
Point 2 is (6, 9.5)
The slope would then be
m = (9.5-3.5)/(6-2)
m = 1.5
Hence, the slope is 1.5. Interpreting the data, the rate of change between t=2 and t=6 is 1.5 thousands per year.
Substitute 15 for p and 12 for q in p + q. We get 15 + 12, or 27.