Answer:
the answer should be B -3
Step-by-step explanation:
1+3-5-2= -3
24y*z^5/32y^2*z
24/32 = 3/4
y/y^2 = 1/y
z^5/z = z^4/1
Soo now that they are all simplified the answer is 3z^4/4y
1) gradient of line = Δ y ÷ Δ x
= (5 -2) ÷ (3 - (-6))
= ¹/₃
using the point-slope form (y-y₁) = m(x-x₁)
using (3,5)
(y - 5) = ¹/₃ (x -3)
y - 5 = ¹/₃x - 1
⇒ <span> y = ¹/₃ x + 4 [OPTION D]
</span>2) y = 2x + 5 .... (1)
<span> </span>y = ¹/₂ x + 6 .... (2)
by substituting y in (1) for y in (2)
2x + 5 = ¹/₂ x + 6
³/₂ x = 1
x = ²/₃
by substituting found x (2)
y = ¹/₂ (²/₃) + 6
y = ¹⁹/₃
∴ common point is (²/₃ , ¹⁹/₃) thus answer is FALSE [OPTION B]
3) Yes [OPTION A]
This is because the both have a gradient of 5 and if they have the same gradient then that means that the two lines are parallel to each other.
4) No [OPTION B]
Two lines are perpendicular if their gradients multiply to give - 1 and as such one is the negative reciprocal of the other. Since both gradients are ¹/₂ then they are actually parallel and not perpendicular.
I hope the choices for the numerators of the solutions are given.
I am showing the complete work to find the solutions of this equation , it will help you to find an answer of your question based on this solution.
The standard form of a quadratic equation is :
ax² + bx + c = 0
And the quadratic formula is:
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
So, first step is to compare the given equation with the above equation to get the value of a, b and c.
So, a = 10, b = -19 and c = 6.
Next step is to plug in these values in the above formula. Therefore,




So, 

So, 
Hope this helps you!
Answer:
69
Step-by-step explanation: