1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DIA [1.3K]
3 years ago
13

Annual windstorm losses, X and Y, in two different regions are independent, and each is uniformly distributed on the interval [0

, 10]. Calculate the covariance of X and Y, given that X+ Y < 10.
Mathematics
1 answer:
galina1969 [7]3 years ago
4 0

Answer:

Cov(X,Y) = -\frac{ 25}{9}

Step-by-step explanation:

Given

Interval =[0,10]

X + Y < 10

Required

Cov(X,Y)

First, we calculate the joint distribution of X and Y

Plot X + Y < 10

So, the joint pdf is:

f(X,Y) = \frac{1}{Area} --- i.e. the area of the shaded region

The shaded area is a triangle that has: height = 10; width = 10

So, we have:

f(X,Y) = \frac{1}{0.5 * 10 * 10}

f(X,Y) = \frac{1}{50}

Cov(X,Y) is calculated as:

Cov(X,Y) = E(XY) - E(X) \cdot E(Y)

Calculate E(XY)

E(XY) =\int\limits^X_0 {\int\limits^Y_0 {\frac{XY}{50}} \, dY} \, dX

X + Y < 10

Make Y the subject

Y < 10 - X

So, we have:

E(XY) =\int\limits^{10}_0 {\int\limits^{10 - X}_0 {\frac{XY}{50}} \, dY} \, dX

Rewrite as:

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\int\limits^{10 - X}_0 {XY}} \, dY} \, dX

Integrate Y

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\frac{XY^2}{2}}} }|\limits^{10 - X}_0  \, dX

Expand

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\frac{X(10 - X)^2}{2} - \frac{X(0)^2}{2}}} }\ dX

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\frac{X(10 - X)^2}{2}}} }\ dX

Rewrite as:

E(XY) =\frac{1}{100}\int\limits^{10}_0 X(10 - X)^2\ dX

Expand

E(XY) =\frac{1}{100}\int\limits^{10}_0 X*(100 - 20X + X^2)\ dX

E(XY) =\frac{1}{100}\int\limits^{10}_0 100X - 20X^2 + X^3\ dX

Integrate

E(XY) =\frac{1}{100} [\frac{100X^2}{2} - \frac{20X^3}{3} + \frac{X^4}{4}]|\limits^{10}_0

Expand

E(XY) =\frac{1}{100} ([\frac{100*10^2}{2} - \frac{20*10^3}{3} + \frac{10^4}{4}] - [\frac{100*0^2}{2} - \frac{20*0^3}{3} + \frac{0^4}{4}])

E(XY) =\frac{1}{100} ([\frac{10000}{2} - \frac{20000}{3} + \frac{10000}{4}] - 0)

E(XY) =\frac{1}{100} ([5000 - \frac{20000}{3} + 2500])

E(XY) =50 - \frac{200}{3} + 25

Take LCM

E(XY) = \frac{150-200+75}{3}

E(XY) = \frac{25}{3}

Calculate E(X)

E(X) =\int\limits^{10}_0 {\int\limits^{10 - X}_0 {\frac{X}{50}}} \, dY} \, dX

Rewrite as:

E(X) =\frac{1}{50}\int\limits^{10}_0 {\int\limits^{10 - X}_0 {X}} \, dY} \, dX

Integrate Y

E(X) =\frac{1}{50}\int\limits^{10}_0 { (X*Y)|\limits^{10 - X}_0 \, dX

Expand

E(X) =\frac{1}{50}\int\limits^{10}_0 ( [X*(10 - X)] - [X * 0])\ dX

E(X) =\frac{1}{50}\int\limits^{10}_0 ( [X*(10 - X)]\ dX

E(X) =\frac{1}{50}\int\limits^{10}_0 10X - X^2\ dX

Integrate

E(X) =\frac{1}{50}(5X^2 - \frac{1}{3}X^3)|\limits^{10}_0

Expand

E(X) =\frac{1}{50}[(5*10^2 - \frac{1}{3}*10^3)-(5*0^2 - \frac{1}{3}*0^3)]

E(X) =\frac{1}{50}[5*100 - \frac{1}{3}*10^3]

E(X) =\frac{1}{50}[500 - \frac{1000}{3}]

E(X) = 10- \frac{20}{3}

Take LCM

E(X) = \frac{30-20}{3}

E(X) = \frac{10}{3}

Calculate E(Y)

E(Y) =\int\limits^{10}_0 {\int\limits^{10 - X}_0 {\frac{Y}{50}}} \, dY} \, dX

Rewrite as:

E(Y) =\frac{1}{50}\int\limits^{10}_0 {\int\limits^{10 - X}_0 {Y}} \, dY} \, dX

Integrate Y

E(Y) =\frac{1}{50}\int\limits^{10}_0 { (\frac{Y^2}{2})|\limits^{10 - X}_0 \, dX

Expand

E(Y) =\frac{1}{50}\int\limits^{10}_0 ( [\frac{(10 - X)^2}{2}] - [\frac{(0)^2}{2}])\ dX

E(Y) =\frac{1}{50}\int\limits^{10}_0 ( [\frac{(10 - X)^2}{2}] )\ dX

E(Y) =\frac{1}{50}\int\limits^{10}_0 [\frac{100 - 20X + X^2}{2}] \ dX

Rewrite as:

E(Y) =\frac{1}{100}\int\limits^{10}_0 [100 - 20X + X^2] \ dX

Integrate

E(Y) =\frac{1}{100}( [100X - 10X^2 + \frac{1}{3}X^3]|\limits^{10}_0)

Expand

E(Y) =\frac{1}{100}( [100*10 - 10*10^2 + \frac{1}{3}*10^3] -[100*0 - 10*0^2 + \frac{1}{3}*0^3] )

E(Y) =\frac{1}{100}[100*10 - 10*10^2 + \frac{1}{3}*10^3]

E(Y) =10 - 10 + \frac{1}{3}*10

E(Y) =\frac{10}{3}

Recall that:

Cov(X,Y) = E(XY) - E(X) \cdot E(Y)

Cov(X,Y) = \frac{25}{3} - \frac{10}{3}*\frac{10}{3}

Cov(X,Y) = \frac{25}{3} - \frac{100}{9}

Take LCM

Cov(X,Y) = \frac{75- 100}{9}

Cov(X,Y) = -\frac{ 25}{9}

You might be interested in
I need help with the the answer please, i don’t know it
geniusboy [140]
When you multiply 6 by 600 it equals 3,600 
6x600=3,600
5 0
3 years ago
PLZ HELP, 20 pts and brainliest awarded, plz ASAP!!!!!!<br><br> see image below
Amiraneli [1.4K]

Answer:

Option B

Step-by-step explanation:

we have

f(x)=x^{3}-x^{2}-9x+9

we know that

<u>The vertical line test </u>is a visual way to determine if a curve is a function or not. A function can only have one value of y for each unique value of x

In this problem

The given function  passes the vertical line test

therefore

f(x) is a function

<u>The Horizontal Line Test</u>  is a test use to determine if a function is one-to-one

If a horizontal line intersects a function's graph more than once, then the function is not one-to-one.

In this problem

The given function fails the horizontal line test

because for f(x)=0 x=-3, x=-1, x=3

therefore

It is no a one-to-one function

8 0
3 years ago
Please help me , thank you
natka813 [3]

Answer:

80 degrees

Step-by-step explanation:

one half of the circle makes a straight line and that will equal 180 degrees so 60+45=105

180-105=80

so the missing angle is x=80

4 0
2 years ago
Read 2 more answers
out of a group of zebras 6/5 times the square root of the number of zebras are playing on the shore of the tank remaining six ar
MatroZZZ [7]

Answer:

Step-by-step explanation:

(6/5)√x = x - 6

(36/25)x = x² - 12x + 36

0 = x² - 13.44x + 36

x = (13.44 ± √(13.44² - 4(1)(36))) / (2(1))

x = (13.44 ± 6.052569702...) / 2

x = 3.69371... zebras

or

x = 9.74628... zebras

In either case we have some odd fractions of zebras hanging around. This makes me highly suspect that the question is misreported

3 0
2 years ago
8% of 44 show work please and an answer ciz i domt understand
nalin [4]
Hey there! 

These are the steps involved in answering the question:

Change 8% into a decimal. To do this, just move the decimal place, 2 places to the left.
You get 0.8

Now, multiply 0.8 by 44. 
0.8 x 44 = 35.2

So, the final answer is: 35.2.

<span>(If you feel that my answer has helped you, please consider rating it and giving it a thank you! Also, feel free to choose the best answer, the brainliest answer!)
</span>
<span>Thank you for being part of the brainly community! :D</span>
7 0
3 years ago
Other questions:
  • Jake can carry 6 1/4 pounds of wood in from the barn. His father can carry 1 5/7 times as much as jake. How many pounds can jake
    13·1 answer
  • How do I turn 500 into a decimal
    5·2 answers
  • Solve for x: 3x - 5 = 2x + 6​
    12·2 answers
  • Pls click the screnshot
    9·1 answer
  • A line with a slope of -2 passes through the point (-2, -1). What is its equation in slope-intercept form?
    15·1 answer
  • If y = - 4/5x - 2, what is the value of x when y = - 9
    7·1 answer
  • Write the quadratic equation in standard form
    14·1 answer
  • Plz answer fast i need the answers thank u​
    6·2 answers
  • Your cat is 8 years younger than your friend. In 4 years, your friend will be twice as old as your cat. How old is your cat now?
    10·1 answer
  • Point F lies between points G and M. GF What is the value of x? 10x +4, FM = 20, and GM = 13x​
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!