1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DIA [1.3K]
3 years ago
13

Annual windstorm losses, X and Y, in two different regions are independent, and each is uniformly distributed on the interval [0

, 10]. Calculate the covariance of X and Y, given that X+ Y < 10.
Mathematics
1 answer:
galina1969 [7]3 years ago
4 0

Answer:

Cov(X,Y) = -\frac{ 25}{9}

Step-by-step explanation:

Given

Interval =[0,10]

X + Y < 10

Required

Cov(X,Y)

First, we calculate the joint distribution of X and Y

Plot X + Y < 10

So, the joint pdf is:

f(X,Y) = \frac{1}{Area} --- i.e. the area of the shaded region

The shaded area is a triangle that has: height = 10; width = 10

So, we have:

f(X,Y) = \frac{1}{0.5 * 10 * 10}

f(X,Y) = \frac{1}{50}

Cov(X,Y) is calculated as:

Cov(X,Y) = E(XY) - E(X) \cdot E(Y)

Calculate E(XY)

E(XY) =\int\limits^X_0 {\int\limits^Y_0 {\frac{XY}{50}} \, dY} \, dX

X + Y < 10

Make Y the subject

Y < 10 - X

So, we have:

E(XY) =\int\limits^{10}_0 {\int\limits^{10 - X}_0 {\frac{XY}{50}} \, dY} \, dX

Rewrite as:

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\int\limits^{10 - X}_0 {XY}} \, dY} \, dX

Integrate Y

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\frac{XY^2}{2}}} }|\limits^{10 - X}_0  \, dX

Expand

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\frac{X(10 - X)^2}{2} - \frac{X(0)^2}{2}}} }\ dX

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\frac{X(10 - X)^2}{2}}} }\ dX

Rewrite as:

E(XY) =\frac{1}{100}\int\limits^{10}_0 X(10 - X)^2\ dX

Expand

E(XY) =\frac{1}{100}\int\limits^{10}_0 X*(100 - 20X + X^2)\ dX

E(XY) =\frac{1}{100}\int\limits^{10}_0 100X - 20X^2 + X^3\ dX

Integrate

E(XY) =\frac{1}{100} [\frac{100X^2}{2} - \frac{20X^3}{3} + \frac{X^4}{4}]|\limits^{10}_0

Expand

E(XY) =\frac{1}{100} ([\frac{100*10^2}{2} - \frac{20*10^3}{3} + \frac{10^4}{4}] - [\frac{100*0^2}{2} - \frac{20*0^3}{3} + \frac{0^4}{4}])

E(XY) =\frac{1}{100} ([\frac{10000}{2} - \frac{20000}{3} + \frac{10000}{4}] - 0)

E(XY) =\frac{1}{100} ([5000 - \frac{20000}{3} + 2500])

E(XY) =50 - \frac{200}{3} + 25

Take LCM

E(XY) = \frac{150-200+75}{3}

E(XY) = \frac{25}{3}

Calculate E(X)

E(X) =\int\limits^{10}_0 {\int\limits^{10 - X}_0 {\frac{X}{50}}} \, dY} \, dX

Rewrite as:

E(X) =\frac{1}{50}\int\limits^{10}_0 {\int\limits^{10 - X}_0 {X}} \, dY} \, dX

Integrate Y

E(X) =\frac{1}{50}\int\limits^{10}_0 { (X*Y)|\limits^{10 - X}_0 \, dX

Expand

E(X) =\frac{1}{50}\int\limits^{10}_0 ( [X*(10 - X)] - [X * 0])\ dX

E(X) =\frac{1}{50}\int\limits^{10}_0 ( [X*(10 - X)]\ dX

E(X) =\frac{1}{50}\int\limits^{10}_0 10X - X^2\ dX

Integrate

E(X) =\frac{1}{50}(5X^2 - \frac{1}{3}X^3)|\limits^{10}_0

Expand

E(X) =\frac{1}{50}[(5*10^2 - \frac{1}{3}*10^3)-(5*0^2 - \frac{1}{3}*0^3)]

E(X) =\frac{1}{50}[5*100 - \frac{1}{3}*10^3]

E(X) =\frac{1}{50}[500 - \frac{1000}{3}]

E(X) = 10- \frac{20}{3}

Take LCM

E(X) = \frac{30-20}{3}

E(X) = \frac{10}{3}

Calculate E(Y)

E(Y) =\int\limits^{10}_0 {\int\limits^{10 - X}_0 {\frac{Y}{50}}} \, dY} \, dX

Rewrite as:

E(Y) =\frac{1}{50}\int\limits^{10}_0 {\int\limits^{10 - X}_0 {Y}} \, dY} \, dX

Integrate Y

E(Y) =\frac{1}{50}\int\limits^{10}_0 { (\frac{Y^2}{2})|\limits^{10 - X}_0 \, dX

Expand

E(Y) =\frac{1}{50}\int\limits^{10}_0 ( [\frac{(10 - X)^2}{2}] - [\frac{(0)^2}{2}])\ dX

E(Y) =\frac{1}{50}\int\limits^{10}_0 ( [\frac{(10 - X)^2}{2}] )\ dX

E(Y) =\frac{1}{50}\int\limits^{10}_0 [\frac{100 - 20X + X^2}{2}] \ dX

Rewrite as:

E(Y) =\frac{1}{100}\int\limits^{10}_0 [100 - 20X + X^2] \ dX

Integrate

E(Y) =\frac{1}{100}( [100X - 10X^2 + \frac{1}{3}X^3]|\limits^{10}_0)

Expand

E(Y) =\frac{1}{100}( [100*10 - 10*10^2 + \frac{1}{3}*10^3] -[100*0 - 10*0^2 + \frac{1}{3}*0^3] )

E(Y) =\frac{1}{100}[100*10 - 10*10^2 + \frac{1}{3}*10^3]

E(Y) =10 - 10 + \frac{1}{3}*10

E(Y) =\frac{10}{3}

Recall that:

Cov(X,Y) = E(XY) - E(X) \cdot E(Y)

Cov(X,Y) = \frac{25}{3} - \frac{10}{3}*\frac{10}{3}

Cov(X,Y) = \frac{25}{3} - \frac{100}{9}

Take LCM

Cov(X,Y) = \frac{75- 100}{9}

Cov(X,Y) = -\frac{ 25}{9}

You might be interested in
How do you do this problem???????????????/
AlekseyPX

Answer:

Price in Japan= 17.81

Price in Switzerland = 13.58

Step-by-step explanation:

First set up system of equations

80.59 = 3j +2s

76.36 = 2j + 3s

Make it to where you can eliminate one variable

161.18 = 6j +4 s

-229.08 = -6j - 9s

Reset the problem

-67.9 = -5s

s=13.58

Re plug them in to the original equation to get j = 17.81

7 0
3 years ago
Please help me solve this
Minchanka [31]

Answer:

Step-by-step explanation:

Sean buys some T-shirts for $12 each and the same number of belts for $7.50 each. Write an expression in the simplest form that represents the total amount.

So n represents the same number for t-shirts and belts.

Therefore n x 12.50 + n x 7.50 OR n(12.50+7.50)

The problem the student made was that they multiplied 12 times n plus 7.50. They forgot to multiply n times 7.50.

An expression that represents the total amount spent is 12n + 7.50n

Hope this helps!

7 0
4 years ago
Please answer this correctly
Deffense [45]

Answer:

Nearly [too low]

Step-by-step explanation:

*<em>Twelve</em><em> </em>→ dozen

<em>Twenty-four</em><em> </em>→ 2 dozen

(24)(4) = 96

Add this to 97 to get 193.

196 > 193

This is a little too low. Choose the third option though.

I am joyous to assist you anytime.

4 0
3 years ago
In AHIJ, the measure of ZJ=90°, IJ = 3.2 feet, and JH = 9.6 feet. Find the measure of
Dmitriy789 [7]

Answer:18.4

Step-by-step explanation:

7 0
3 years ago
HELP TAKE YOUR TIME°!!!<br><br><br> FOR MY SISTER
lutik1710 [3]

Answer:

1.15

2.1

3.3

45

5.3

6.8

7.4

8.5

9. 24

Step-by-step explanation:

<h2> Carry on learning</h2>
6 0
2 years ago
Read 2 more answers
Other questions:
  • How do I show work ? Plz help me
    11·2 answers
  • (a) Find parametric equations for the line through (3, 1, 8) that is perpendicular to the plane x − y + 4z = 7. (Use the paramet
    15·1 answer
  • When full a 22 gallon gas tank holds about 129.8 pounds of gasoline estimate the weight of one gallon of gasoline if it cost 91.
    10·1 answer
  • 1/4 + 1/4 + 1/4 + 1/4 + 1/4 = 5/4. Which multiplication expression shows another way to make 5/4?
    10·2 answers
  • The school district reports that the student to computer ratio is 10:1. In a class of 25 students, how many computers would ther
    7·2 answers
  • The duration (in days) of human pregnancies follows approximately the Normal with mean 266 days and standard deviation 16 days.
    14·1 answer
  • How do you find the IQR? *
    9·1 answer
  • Using similar triangles if KLM~ PQR with a scale factor of 3:5, find the perimeter of PQR (With work please)
    8·2 answers
  • Solve the equation<br> 1/3 + a = 5/4<br><br> a =
    8·1 answer
  • Find the length of x.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!