1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DIA [1.3K]
3 years ago
13

Annual windstorm losses, X and Y, in two different regions are independent, and each is uniformly distributed on the interval [0

, 10]. Calculate the covariance of X and Y, given that X+ Y < 10.
Mathematics
1 answer:
galina1969 [7]3 years ago
4 0

Answer:

Cov(X,Y) = -\frac{ 25}{9}

Step-by-step explanation:

Given

Interval =[0,10]

X + Y < 10

Required

Cov(X,Y)

First, we calculate the joint distribution of X and Y

Plot X + Y < 10

So, the joint pdf is:

f(X,Y) = \frac{1}{Area} --- i.e. the area of the shaded region

The shaded area is a triangle that has: height = 10; width = 10

So, we have:

f(X,Y) = \frac{1}{0.5 * 10 * 10}

f(X,Y) = \frac{1}{50}

Cov(X,Y) is calculated as:

Cov(X,Y) = E(XY) - E(X) \cdot E(Y)

Calculate E(XY)

E(XY) =\int\limits^X_0 {\int\limits^Y_0 {\frac{XY}{50}} \, dY} \, dX

X + Y < 10

Make Y the subject

Y < 10 - X

So, we have:

E(XY) =\int\limits^{10}_0 {\int\limits^{10 - X}_0 {\frac{XY}{50}} \, dY} \, dX

Rewrite as:

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\int\limits^{10 - X}_0 {XY}} \, dY} \, dX

Integrate Y

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\frac{XY^2}{2}}} }|\limits^{10 - X}_0  \, dX

Expand

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\frac{X(10 - X)^2}{2} - \frac{X(0)^2}{2}}} }\ dX

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\frac{X(10 - X)^2}{2}}} }\ dX

Rewrite as:

E(XY) =\frac{1}{100}\int\limits^{10}_0 X(10 - X)^2\ dX

Expand

E(XY) =\frac{1}{100}\int\limits^{10}_0 X*(100 - 20X + X^2)\ dX

E(XY) =\frac{1}{100}\int\limits^{10}_0 100X - 20X^2 + X^3\ dX

Integrate

E(XY) =\frac{1}{100} [\frac{100X^2}{2} - \frac{20X^3}{3} + \frac{X^4}{4}]|\limits^{10}_0

Expand

E(XY) =\frac{1}{100} ([\frac{100*10^2}{2} - \frac{20*10^3}{3} + \frac{10^4}{4}] - [\frac{100*0^2}{2} - \frac{20*0^3}{3} + \frac{0^4}{4}])

E(XY) =\frac{1}{100} ([\frac{10000}{2} - \frac{20000}{3} + \frac{10000}{4}] - 0)

E(XY) =\frac{1}{100} ([5000 - \frac{20000}{3} + 2500])

E(XY) =50 - \frac{200}{3} + 25

Take LCM

E(XY) = \frac{150-200+75}{3}

E(XY) = \frac{25}{3}

Calculate E(X)

E(X) =\int\limits^{10}_0 {\int\limits^{10 - X}_0 {\frac{X}{50}}} \, dY} \, dX

Rewrite as:

E(X) =\frac{1}{50}\int\limits^{10}_0 {\int\limits^{10 - X}_0 {X}} \, dY} \, dX

Integrate Y

E(X) =\frac{1}{50}\int\limits^{10}_0 { (X*Y)|\limits^{10 - X}_0 \, dX

Expand

E(X) =\frac{1}{50}\int\limits^{10}_0 ( [X*(10 - X)] - [X * 0])\ dX

E(X) =\frac{1}{50}\int\limits^{10}_0 ( [X*(10 - X)]\ dX

E(X) =\frac{1}{50}\int\limits^{10}_0 10X - X^2\ dX

Integrate

E(X) =\frac{1}{50}(5X^2 - \frac{1}{3}X^3)|\limits^{10}_0

Expand

E(X) =\frac{1}{50}[(5*10^2 - \frac{1}{3}*10^3)-(5*0^2 - \frac{1}{3}*0^3)]

E(X) =\frac{1}{50}[5*100 - \frac{1}{3}*10^3]

E(X) =\frac{1}{50}[500 - \frac{1000}{3}]

E(X) = 10- \frac{20}{3}

Take LCM

E(X) = \frac{30-20}{3}

E(X) = \frac{10}{3}

Calculate E(Y)

E(Y) =\int\limits^{10}_0 {\int\limits^{10 - X}_0 {\frac{Y}{50}}} \, dY} \, dX

Rewrite as:

E(Y) =\frac{1}{50}\int\limits^{10}_0 {\int\limits^{10 - X}_0 {Y}} \, dY} \, dX

Integrate Y

E(Y) =\frac{1}{50}\int\limits^{10}_0 { (\frac{Y^2}{2})|\limits^{10 - X}_0 \, dX

Expand

E(Y) =\frac{1}{50}\int\limits^{10}_0 ( [\frac{(10 - X)^2}{2}] - [\frac{(0)^2}{2}])\ dX

E(Y) =\frac{1}{50}\int\limits^{10}_0 ( [\frac{(10 - X)^2}{2}] )\ dX

E(Y) =\frac{1}{50}\int\limits^{10}_0 [\frac{100 - 20X + X^2}{2}] \ dX

Rewrite as:

E(Y) =\frac{1}{100}\int\limits^{10}_0 [100 - 20X + X^2] \ dX

Integrate

E(Y) =\frac{1}{100}( [100X - 10X^2 + \frac{1}{3}X^3]|\limits^{10}_0)

Expand

E(Y) =\frac{1}{100}( [100*10 - 10*10^2 + \frac{1}{3}*10^3] -[100*0 - 10*0^2 + \frac{1}{3}*0^3] )

E(Y) =\frac{1}{100}[100*10 - 10*10^2 + \frac{1}{3}*10^3]

E(Y) =10 - 10 + \frac{1}{3}*10

E(Y) =\frac{10}{3}

Recall that:

Cov(X,Y) = E(XY) - E(X) \cdot E(Y)

Cov(X,Y) = \frac{25}{3} - \frac{10}{3}*\frac{10}{3}

Cov(X,Y) = \frac{25}{3} - \frac{100}{9}

Take LCM

Cov(X,Y) = \frac{75- 100}{9}

Cov(X,Y) = -\frac{ 25}{9}

You might be interested in
How long is 3/4 of an hour
user100 [1]
3/4 of an hour is <span>45 minutes.</span>
5 0
3 years ago
Read 2 more answers
Guys please help me i cant do this
Zepler [3.9K]

Answer:

Step-by-step explanation:

add all of them and then see if they right

8 0
2 years ago
Read 2 more answers
If yall help me with all the answers ill give you 32 points. Ik this is easy but I'm too lazy to do this. someone help me, pleas
Anna007 [38]

Answer:

100-both

75-5

565- 5

2815- 5

10050- both

57- 3

1365- 3

14- 2

81- 3

3850- 2

333- 9

1125- 9

448- 8

630- 9

5496- 8

114- 6

21,750- 6

3580- 4

2528- 4

944- 4

Step-by-step explanation:

8 0
3 years ago
LESSON 23-1 PRACTICE
monitta

Answer:

2

Step-by-step explanation:

2 tuijnbb

6 0
3 years ago
Read 2 more answers
Suppose a shoe factory produces both low-grade and high-grade shoes. The factory produces at least twice as many low-grade as hi
umka2103 [35]

Answer:

The factory should produce 166 pairs of high-grade shoes and 364 pairs of low-grade shoes for maximum profit

Step-by-step explanation:

The given parameters for the shoe production are;

The number of low grade shoes the factory produces ≥ 2 × The number of high-grade shoes produced by the factory

The maximum number of shoes the factory can produce = 500 pairs of shoes

The number of high-grade shoes the dealer calls for daily ≥ 100 pairs

The profit made per pair of high-grade shoed = Birr 2.00

The profit made per of low-grade shoes = Birr 1.00

Let 'H', represent the number of high grade shoes the factory produces and let 'L' represent he number of low-grade shoes the factory produces, we have;

L ≥ 2·H...(1)

L + H ≤ 500...(2)

H ≥ 100...(3)

Total profit, P = 2·H + L

From inequalities (1) and (2), we have;

3·H ≤ 500

H ≤ 500/3 ≈ 166

The maximum number of high-grade shoes that can be produced, H ≤ 166

Therefore, for maximum profit, the factory should produce the maximum number of high-grade shoe pairs, H = 166 pairs

The number of pairs of low grade shoes the factory should produce, L = 500 - 166 = 334 pairs

The maximum profit, P = 2 × 166 + 1 × 364 = 696

6 1
3 years ago
Read 2 more answers
Other questions:
  • A carpenter earns $11.00 per hour. he worked 3 1 4 hours on wednesday, 7 1 4 hours on thursday and 5 2 4 hours on friday. how mu
    10·1 answer
  • Determine weather the algebraic expression is linear expression explain
    15·1 answer
  • Alana has 12.5 cups of flour with which she is baking
    12·2 answers
  • The 10,000-meter long-distance running event in the summer Olympics is approximately 6.2 miles. Which equation could be used to
    10·1 answer
  • Aleka and Helene both opened savings accounts that earn 2.5% interest a year. Aleka puts $2,500 into her account. Helene put $1,
    12·2 answers
  • The length of a new rectangular playing field is 4 yards longer than quadruple the width. If the perimeter of the rectangular pl
    6·1 answer
  • What is the product of 2x + 3 and 4x2 − 5x + 6
    11·1 answer
  • Find the quotient
    8·1 answer
  • Will three sides of any length create a triangle?
    9·1 answer
  • Let f(x) = 5x − 6. Simplify each of the following expressions.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!