1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DIA [1.3K]
3 years ago
13

Annual windstorm losses, X and Y, in two different regions are independent, and each is uniformly distributed on the interval [0

, 10]. Calculate the covariance of X and Y, given that X+ Y < 10.
Mathematics
1 answer:
galina1969 [7]3 years ago
4 0

Answer:

Cov(X,Y) = -\frac{ 25}{9}

Step-by-step explanation:

Given

Interval =[0,10]

X + Y < 10

Required

Cov(X,Y)

First, we calculate the joint distribution of X and Y

Plot X + Y < 10

So, the joint pdf is:

f(X,Y) = \frac{1}{Area} --- i.e. the area of the shaded region

The shaded area is a triangle that has: height = 10; width = 10

So, we have:

f(X,Y) = \frac{1}{0.5 * 10 * 10}

f(X,Y) = \frac{1}{50}

Cov(X,Y) is calculated as:

Cov(X,Y) = E(XY) - E(X) \cdot E(Y)

Calculate E(XY)

E(XY) =\int\limits^X_0 {\int\limits^Y_0 {\frac{XY}{50}} \, dY} \, dX

X + Y < 10

Make Y the subject

Y < 10 - X

So, we have:

E(XY) =\int\limits^{10}_0 {\int\limits^{10 - X}_0 {\frac{XY}{50}} \, dY} \, dX

Rewrite as:

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\int\limits^{10 - X}_0 {XY}} \, dY} \, dX

Integrate Y

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\frac{XY^2}{2}}} }|\limits^{10 - X}_0  \, dX

Expand

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\frac{X(10 - X)^2}{2} - \frac{X(0)^2}{2}}} }\ dX

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\frac{X(10 - X)^2}{2}}} }\ dX

Rewrite as:

E(XY) =\frac{1}{100}\int\limits^{10}_0 X(10 - X)^2\ dX

Expand

E(XY) =\frac{1}{100}\int\limits^{10}_0 X*(100 - 20X + X^2)\ dX

E(XY) =\frac{1}{100}\int\limits^{10}_0 100X - 20X^2 + X^3\ dX

Integrate

E(XY) =\frac{1}{100} [\frac{100X^2}{2} - \frac{20X^3}{3} + \frac{X^4}{4}]|\limits^{10}_0

Expand

E(XY) =\frac{1}{100} ([\frac{100*10^2}{2} - \frac{20*10^3}{3} + \frac{10^4}{4}] - [\frac{100*0^2}{2} - \frac{20*0^3}{3} + \frac{0^4}{4}])

E(XY) =\frac{1}{100} ([\frac{10000}{2} - \frac{20000}{3} + \frac{10000}{4}] - 0)

E(XY) =\frac{1}{100} ([5000 - \frac{20000}{3} + 2500])

E(XY) =50 - \frac{200}{3} + 25

Take LCM

E(XY) = \frac{150-200+75}{3}

E(XY) = \frac{25}{3}

Calculate E(X)

E(X) =\int\limits^{10}_0 {\int\limits^{10 - X}_0 {\frac{X}{50}}} \, dY} \, dX

Rewrite as:

E(X) =\frac{1}{50}\int\limits^{10}_0 {\int\limits^{10 - X}_0 {X}} \, dY} \, dX

Integrate Y

E(X) =\frac{1}{50}\int\limits^{10}_0 { (X*Y)|\limits^{10 - X}_0 \, dX

Expand

E(X) =\frac{1}{50}\int\limits^{10}_0 ( [X*(10 - X)] - [X * 0])\ dX

E(X) =\frac{1}{50}\int\limits^{10}_0 ( [X*(10 - X)]\ dX

E(X) =\frac{1}{50}\int\limits^{10}_0 10X - X^2\ dX

Integrate

E(X) =\frac{1}{50}(5X^2 - \frac{1}{3}X^3)|\limits^{10}_0

Expand

E(X) =\frac{1}{50}[(5*10^2 - \frac{1}{3}*10^3)-(5*0^2 - \frac{1}{3}*0^3)]

E(X) =\frac{1}{50}[5*100 - \frac{1}{3}*10^3]

E(X) =\frac{1}{50}[500 - \frac{1000}{3}]

E(X) = 10- \frac{20}{3}

Take LCM

E(X) = \frac{30-20}{3}

E(X) = \frac{10}{3}

Calculate E(Y)

E(Y) =\int\limits^{10}_0 {\int\limits^{10 - X}_0 {\frac{Y}{50}}} \, dY} \, dX

Rewrite as:

E(Y) =\frac{1}{50}\int\limits^{10}_0 {\int\limits^{10 - X}_0 {Y}} \, dY} \, dX

Integrate Y

E(Y) =\frac{1}{50}\int\limits^{10}_0 { (\frac{Y^2}{2})|\limits^{10 - X}_0 \, dX

Expand

E(Y) =\frac{1}{50}\int\limits^{10}_0 ( [\frac{(10 - X)^2}{2}] - [\frac{(0)^2}{2}])\ dX

E(Y) =\frac{1}{50}\int\limits^{10}_0 ( [\frac{(10 - X)^2}{2}] )\ dX

E(Y) =\frac{1}{50}\int\limits^{10}_0 [\frac{100 - 20X + X^2}{2}] \ dX

Rewrite as:

E(Y) =\frac{1}{100}\int\limits^{10}_0 [100 - 20X + X^2] \ dX

Integrate

E(Y) =\frac{1}{100}( [100X - 10X^2 + \frac{1}{3}X^3]|\limits^{10}_0)

Expand

E(Y) =\frac{1}{100}( [100*10 - 10*10^2 + \frac{1}{3}*10^3] -[100*0 - 10*0^2 + \frac{1}{3}*0^3] )

E(Y) =\frac{1}{100}[100*10 - 10*10^2 + \frac{1}{3}*10^3]

E(Y) =10 - 10 + \frac{1}{3}*10

E(Y) =\frac{10}{3}

Recall that:

Cov(X,Y) = E(XY) - E(X) \cdot E(Y)

Cov(X,Y) = \frac{25}{3} - \frac{10}{3}*\frac{10}{3}

Cov(X,Y) = \frac{25}{3} - \frac{100}{9}

Take LCM

Cov(X,Y) = \frac{75- 100}{9}

Cov(X,Y) = -\frac{ 25}{9}

You might be interested in
I will give brainliest to the person who answers all questions
stellarik [79]

Answer: Hope this helps!

Left to right - Q1 - Q5

1,500, 1,250, 0.25, 105, 25%

Step-by-step explanation:

Q1 - 15,000 * 0.02 * 5 = 1,500

Q2 - 25,000 * 0.01 * 5 = 1,250

Q3 - 20 - ((6 * 1) + (3 * 0.75) + (10 * 0.35) + (4 * 2)) = 0.25, 25 cents

Q4 - 30x + 1,000 = 4,200 (X = 107) Approximately 105 jobs

Q5 - 1,584 / (32 * 66) = 0.75 (75%) 100% - 75% = 25%

4 0
2 years ago
Read 2 more answers
Help please!!!! I’ll appreciate it so much!
bazaltina [42]

Answer:

13. x = 4

14. x = -16

15. x = 11

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Express 0.0939 as a fraction
DaniilM [7]
939/10,000 the decimal place indicates the fraction. You would love the decimal over 4 spaces which is the ten thousands place so that is what you set 939 over!
3 0
3 years ago
Read 2 more answers
The original rectangle has a perimeter of 16
zaharov [31]

As we can see that the sides of the rectangle have been doubled

6.2 ft changed to 12.4 ft

Now when the sides have been doubled

the Perimeter will also be doubled

So the perimeter of new rectangle should be the double the perimeter of old rectangle

So perimeter of new rectangle = 2 (16 ) = 32 feet

Option C is correct

7 0
3 years ago
What is the algebraic expression for the following word phrase: the quotient of 8 and the sum of 3 and m?
serg [7]

we know that

the algebraic expression is equal to

\frac{8}{(3+m)}

therefore

<u>the answer is</u>

\frac{8}{(3+m)}


5 0
3 years ago
Read 2 more answers
Other questions:
  • R varies directly as s. Find r when s=10 and k=4
    12·2 answers
  • Triangle abc is a right triangle if side ac=7 and bc=10 whats the measure of side ab
    14·1 answer
  • Baby jacci, who is 2 days old, is shown four drawings: a blue square, a white oval, a drawing of a face, and a bright red circle
    5·1 answer
  • Jenna divided 120 daisies into 2 equal groups . Then she divided each group equally into 10 small bunches .she gave her grandmot
    13·2 answers
  • 34% of 29.5 is what number
    10·1 answer
  • Question 5<br> What is the area of the figure below?<br> 4 cm<br> 5 cm<br> 3 cm<br> 5 cm
    14·1 answer
  • I need helpppp (least to greatest)
    15·1 answer
  • I will brainliest to whoever can solve this :)
    10·2 answers
  • Solve for x and y and i will mark brainliest
    7·1 answer
  • PLEASE HELP ME I NEED TO KNOW
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!