1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DIA [1.3K]
3 years ago
13

Annual windstorm losses, X and Y, in two different regions are independent, and each is uniformly distributed on the interval [0

, 10]. Calculate the covariance of X and Y, given that X+ Y < 10.
Mathematics
1 answer:
galina1969 [7]3 years ago
4 0

Answer:

Cov(X,Y) = -\frac{ 25}{9}

Step-by-step explanation:

Given

Interval =[0,10]

X + Y < 10

Required

Cov(X,Y)

First, we calculate the joint distribution of X and Y

Plot X + Y < 10

So, the joint pdf is:

f(X,Y) = \frac{1}{Area} --- i.e. the area of the shaded region

The shaded area is a triangle that has: height = 10; width = 10

So, we have:

f(X,Y) = \frac{1}{0.5 * 10 * 10}

f(X,Y) = \frac{1}{50}

Cov(X,Y) is calculated as:

Cov(X,Y) = E(XY) - E(X) \cdot E(Y)

Calculate E(XY)

E(XY) =\int\limits^X_0 {\int\limits^Y_0 {\frac{XY}{50}} \, dY} \, dX

X + Y < 10

Make Y the subject

Y < 10 - X

So, we have:

E(XY) =\int\limits^{10}_0 {\int\limits^{10 - X}_0 {\frac{XY}{50}} \, dY} \, dX

Rewrite as:

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\int\limits^{10 - X}_0 {XY}} \, dY} \, dX

Integrate Y

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\frac{XY^2}{2}}} }|\limits^{10 - X}_0  \, dX

Expand

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\frac{X(10 - X)^2}{2} - \frac{X(0)^2}{2}}} }\ dX

E(XY) =\frac{1}{50}\int\limits^{10}_0 {\frac{X(10 - X)^2}{2}}} }\ dX

Rewrite as:

E(XY) =\frac{1}{100}\int\limits^{10}_0 X(10 - X)^2\ dX

Expand

E(XY) =\frac{1}{100}\int\limits^{10}_0 X*(100 - 20X + X^2)\ dX

E(XY) =\frac{1}{100}\int\limits^{10}_0 100X - 20X^2 + X^3\ dX

Integrate

E(XY) =\frac{1}{100} [\frac{100X^2}{2} - \frac{20X^3}{3} + \frac{X^4}{4}]|\limits^{10}_0

Expand

E(XY) =\frac{1}{100} ([\frac{100*10^2}{2} - \frac{20*10^3}{3} + \frac{10^4}{4}] - [\frac{100*0^2}{2} - \frac{20*0^3}{3} + \frac{0^4}{4}])

E(XY) =\frac{1}{100} ([\frac{10000}{2} - \frac{20000}{3} + \frac{10000}{4}] - 0)

E(XY) =\frac{1}{100} ([5000 - \frac{20000}{3} + 2500])

E(XY) =50 - \frac{200}{3} + 25

Take LCM

E(XY) = \frac{150-200+75}{3}

E(XY) = \frac{25}{3}

Calculate E(X)

E(X) =\int\limits^{10}_0 {\int\limits^{10 - X}_0 {\frac{X}{50}}} \, dY} \, dX

Rewrite as:

E(X) =\frac{1}{50}\int\limits^{10}_0 {\int\limits^{10 - X}_0 {X}} \, dY} \, dX

Integrate Y

E(X) =\frac{1}{50}\int\limits^{10}_0 { (X*Y)|\limits^{10 - X}_0 \, dX

Expand

E(X) =\frac{1}{50}\int\limits^{10}_0 ( [X*(10 - X)] - [X * 0])\ dX

E(X) =\frac{1}{50}\int\limits^{10}_0 ( [X*(10 - X)]\ dX

E(X) =\frac{1}{50}\int\limits^{10}_0 10X - X^2\ dX

Integrate

E(X) =\frac{1}{50}(5X^2 - \frac{1}{3}X^3)|\limits^{10}_0

Expand

E(X) =\frac{1}{50}[(5*10^2 - \frac{1}{3}*10^3)-(5*0^2 - \frac{1}{3}*0^3)]

E(X) =\frac{1}{50}[5*100 - \frac{1}{3}*10^3]

E(X) =\frac{1}{50}[500 - \frac{1000}{3}]

E(X) = 10- \frac{20}{3}

Take LCM

E(X) = \frac{30-20}{3}

E(X) = \frac{10}{3}

Calculate E(Y)

E(Y) =\int\limits^{10}_0 {\int\limits^{10 - X}_0 {\frac{Y}{50}}} \, dY} \, dX

Rewrite as:

E(Y) =\frac{1}{50}\int\limits^{10}_0 {\int\limits^{10 - X}_0 {Y}} \, dY} \, dX

Integrate Y

E(Y) =\frac{1}{50}\int\limits^{10}_0 { (\frac{Y^2}{2})|\limits^{10 - X}_0 \, dX

Expand

E(Y) =\frac{1}{50}\int\limits^{10}_0 ( [\frac{(10 - X)^2}{2}] - [\frac{(0)^2}{2}])\ dX

E(Y) =\frac{1}{50}\int\limits^{10}_0 ( [\frac{(10 - X)^2}{2}] )\ dX

E(Y) =\frac{1}{50}\int\limits^{10}_0 [\frac{100 - 20X + X^2}{2}] \ dX

Rewrite as:

E(Y) =\frac{1}{100}\int\limits^{10}_0 [100 - 20X + X^2] \ dX

Integrate

E(Y) =\frac{1}{100}( [100X - 10X^2 + \frac{1}{3}X^3]|\limits^{10}_0)

Expand

E(Y) =\frac{1}{100}( [100*10 - 10*10^2 + \frac{1}{3}*10^3] -[100*0 - 10*0^2 + \frac{1}{3}*0^3] )

E(Y) =\frac{1}{100}[100*10 - 10*10^2 + \frac{1}{3}*10^3]

E(Y) =10 - 10 + \frac{1}{3}*10

E(Y) =\frac{10}{3}

Recall that:

Cov(X,Y) = E(XY) - E(X) \cdot E(Y)

Cov(X,Y) = \frac{25}{3} - \frac{10}{3}*\frac{10}{3}

Cov(X,Y) = \frac{25}{3} - \frac{100}{9}

Take LCM

Cov(X,Y) = \frac{75- 100}{9}

Cov(X,Y) = -\frac{ 25}{9}

You might be interested in
A: A circle has a circumference of 45 cm. What is the BEST estimate of the circle’s diameter?
dedylja [7]

Answer:

14

Step-by-step explanation:

d=c/pi

45/pi=14

6 0
3 years ago
Read 2 more answers
If the outside temperature was 72 yesterday and today is 16 degrees cooler what is today's temperature
Natalija [7]

Answer:

56 degrees Fahrenheit

5 0
3 years ago
Read 2 more answers
Complete the calculation how to find partial products<br><br> 1 2 4<br> × 2<br> ----------
a_sh-v [17]
The first step is to write each factor in expanding notation.

This is:

- 124 = 100 + 20 + 4
- 2 = 2

Now muliply 2 times each term of the terms 100, 20 and 4

=> 2 * 100 = 200

2 * 20 = 40

2 * 4 = 8

Then,

    (100 + 20 + 4 )
x                     2
-----------------------
                       8
                     40
                   200
------------------------
                   248

6 0
3 years ago
Please help!!! 40 pts The principal represents an amount of money deposited in a savings account subject to compound interest at
Eva8 [605]
Ok I’m done what can I send it on
5 0
3 years ago
Identify the equation that represents this solution &amp; the correct solution.
Hitman42 [59]
The answer is A. d-17= 22; d=39
6 0
3 years ago
Other questions:
  • Common denominator for 5 and 2?
    14·2 answers
  • Is this a function or no
    9·2 answers
  • Hasan plans to choose a book from a section of the store where everything is 25%25% off. He writes the expression d−0.25dd-0.25d
    9·2 answers
  • Mr. Rubio is buying a burger meal for each member of his family. He buys each family member a burger for $2.75, a drink for $1.3
    5·1 answer
  • Use the grouping method to factor the polynomial below completely.<br> x3-5x2+3x-15
    13·1 answer
  • HELP ME FOR BRAINLIEST
    13·1 answer
  • Help me with this please
    12·1 answer
  • 900 has how many 100s?
    11·2 answers
  • Find the area. Use 3.14 for the value of pi . Round your answer to the nearest tenth.
    6·2 answers
  • PLEASE HELP WILL MARK BRAINLIEST FOR BEST ANSWER If you reflect (-2, -8) across both axes, which quadrant will it be in? Justify
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!