Hi. I was unsure of what exactly you wanted from this equation, so here's a quick analysis:
<em>f(x) = 2(x - 3)^2 - 2</em>
<em></em>
Domain: (-∞, ∞)
Range: (-2, ∞)
X-intercepts: (4, 0), (2, 0)
Y-intercept: (0, 16)
Axis of Symmetry: x = 3
Minimum value (vertex): (3, -2)
Standard form: y = 2x^2 - 12x + 16
Answer:
26.5
Step-by-step explanation:
used calculator
Answer:
x ≥ -5
Step-by-step explanation:
15≥-3x
<em>switch sides</em>
<em>-3x≤15</em>
<em>Multiply both sides by -1 (reverse the inequality)</em>
<em>(-3x)(-1)≥15(-1)</em>
<em>Simplify</em>
<em>3x≥-15</em>
<em>Divide both sides by 3</em>
<em>3x/3≥ -15/3</em>
<em>Simplify</em>
<em>x≥ -5</em>
The range of the <em>quadratic</em> function y = (2 / 3) · x² - 6 is {- 6, 0, 18, 48}.
<h3>What is the range of a quadratic equation?</h3>
In this case we have a <em>quadratic</em> equation whose domain is stated. The domain of a function is the set of x-values associated to only an element of the range of the function, that is, the set of y-values of the function. We proceed to evaluate the function at each element of the domain and check if the results are in the choices available.
x = - 9
y = (2 / 3) · (- 9)² - 6
y = 48
x = - 6
y = (2 / 3) · (- 6)² - 6
y = 18
x = - 3
y = (2 / 3) · (- 3)² - 6
y = 0
x = 0
y = (2 / 3) · 0² - 6
y = - 6
x = 3
y = (2 / 3) · 3² - 6
y = 0
x = 6
y = (2 / 3) · 6² - 6
y = 18
x = 9
y = (2 / 3) · 9² - 6
y = 48
The range of the <em>quadratic</em> function y = (2 / 3) · x² - 6 is {- 6, 0, 18, 48}.
To learn more on functions: brainly.com/question/12431044
#SPJ1