Problem 3: Let x = price of bag of pretzels Let y = price of box of granola bars
We have Lesley's purchase: 4x+2y=13.50
And Landon's: 1x+5y=17.55
We can use the elimination method. Let's negate Landon's purchase by multiplying by -1. -1x-5y=-17.55
We add this four times to Lesley's purchase to eliminate the x variable.
2y-20y=13.50-70.2
-18y=-56.7
y = $3.15 = Price of box of granola bars
Plug back into Landon's purchase to solve for pretzels.
x+5*3.15=17.55
x+15.75=17.55
x = $1.80 = price of bag of pretzels
Problem 4.
Let w = number of wood bats sold
Let m = number of metal bats sold
From sales information we have: w + m = 23
24w+30m=606
Substitution works well here. Solve for w in the first equation, w = 23 - m, and plug this into the second.
24*(23-m)+30m=606
552-24m+30m=606
6m=54
m=9 = number of metal bats sold
Therefore since w = 23-m, w = 23-9 = 14. 14 wooden bats were sold.
The weight of an object is the product of its mass and the acceleration of gravity.
If g[e] is the acceleration of gravity on earth, and g[M] the same for Mars and g[m] the same for the moon,
then m[M]=m[e]g[M]/g[e] and m[m]=m[e]g[m]/g[e] where m[ ] denotes mass. Note that weight=mg (measured in newtons) while mass is in kilograms.
If g[M]=g[e]/3 and g[m]=g[e]/6 approximately. Then the weight of an object on Mars will be about a third of what it is on earth, while on the moon it would be about a sixth of what it is on earth.
It's D)
you can subsitute any number you want for x and it'd still be a soloution to y=
Answer:
x = 54
y = 47.5
Step-by-step explanation:
If two lines p and q are parallel and line r is a transversal intersecting these lines at two different points,
(x + 56)° = (2x + 2)° [corresponding angles]
2x - x = 56 - 2
x = 54
Similarly, lines r and s are parallel lines and q is a transversal line intersecting these lines,
(y + 7)° + (3y - 17)°= 180° [Consecutive exterior angles]
4y - 10 = 180
4y = 190
y = 47.5