O.17 because it can also be 0.170 witch is still bigger then 0.165
Answer:
(identity has been verified)
Step-by-step explanation:
Verify the following identity:
sin(x)^4 - sin(x)^2 = cos(x)^4 - cos(x)^2
sin(x)^2 = 1 - cos(x)^2:
sin(x)^4 - 1 - cos(x)^2 = ^?cos(x)^4 - cos(x)^2
-(1 - cos(x)^2) = cos(x)^2 - 1:
cos(x)^2 - 1 + sin(x)^4 = ^?cos(x)^4 - cos(x)^2
sin(x)^4 = (sin(x)^2)^2 = (1 - cos(x)^2)^2:
-1 + cos(x)^2 + (1 - cos(x)^2)^2 = ^?cos(x)^4 - cos(x)^2
(1 - cos(x)^2)^2 = 1 - 2 cos(x)^2 + cos(x)^4:
-1 + cos(x)^2 + 1 - 2 cos(x)^2 + cos(x)^4 = ^?cos(x)^4 - cos(x)^2
-1 + cos(x)^2 + 1 - 2 cos(x)^2 + cos(x)^4 = cos(x)^4 - cos(x)^2:
cos(x)^4 - cos(x)^2 = ^?cos(x)^4 - cos(x)^2
The left hand side and right hand side are identical:
Answer: (identity has been verified)
Answer:
10x-15y
Step-by-step explanation:
5(2x-3y)
10x-15y
9514 1404 393
Answer:
a) average rate = (total distance)/(total time)
b) Rave = 2·R1·R2/(R1 +R2)
c) cheetah's average rate ≈ 50.91 mph
Step-by-step explanation:
a) Let AB represent the distance from A to B. Let t1 and t2 represent the travel times (in hours) on leg1 and leg2 of the trip, respectively. Then the distances traveled are...
First leg distance: AB = 70·t1 ⇒ t1 = AB/70
Second leg distance: AB = 40·t2 ⇒ t2 = AB/40
The average rate is the ratio of total distance to total time:
average rate = (AB +AB)/(t1 +t2)
average rate = 2AB/(AB/70 +AB/40) = 2/(1/70 +1/40) = 2(40)(70)/(70+40)
average rate = 560/11 = 50 10/11 . . . mph
__
No equations are given, so we cannot compare what we wrote with the given equations. In each step of the solution, we have used the rules of algebra and equality.
b) For two rates over the same distance (as above), the average is their harmonic mean:
average rate = 2r1·r2/(r1+r2)
__
c) The cheetah's average rate was 50 10/11 mph ≈ 50.91 mph.
The answer is 5.83
Use the Pythagorean Theorem to calculate the 3rd side length.
a^2+b^2=c^2
3^2+5^2=c^2