Here's the formula for the distance covered by an accelerating body in some amount of time ' T '. This formula is incredibly simple but incredibly useful. It pops up so often in Physics that you really should memorize it:
D = 1/2 a T²
Distance = (1/2)·(acceleration)·(time²)
This question gives us the acceleration and the distance, and we want to find the time.
(9,000 m) = (1/2) (20 m/s²) (time²)
(9,000 m) = (10 m/s²) (time²)
Divide each side by 10 m/s²:
(9,000 m) / (10 m/s²) = (time²)
900 s² = time²
Square root each side:
<em>T = 30 seconds</em>
A) Rubber stops charges from flowing. This protects people by stopping electricity from flowing.
Explanation:
The statement that best describes the point of wrapping rubber around the copper wire is that the rubber stops charges from flowing. This prevents people from getting electrical shocks by stopping the flow of electricity.
- A rubber is an insulator.
- Insulators are substances that prevents the flow of electricity.
- The lack free mobile electrons or ions that makes them conductors.
- When they are wrapped round a conductor such as copper wire, they will halt the flow of charges.
- Copper is a conductor of both heat and electricity. It has free mobile electrons.
learn more:
Metals brainly.com/question/2474874
#learnwithBrainly
Here if we assume that there is no air friction on both balls then we can say

now the acceleration is given as


so here both the balls will have same acceleration irrespective of size and mass
so we can say that to find out the time of fall of ball we can use


now from above equation we can say that time taken to hit the ground will be same for both balls and it is irrespective of its mass and size
<em>The answer is </em>Ninth <em>and </em>Tenth <em>grade so the answer would be</em> B
<em>I hope this helps you </em>
Answer:
Total momentum = 50kgm/s
Explanation:
<u>Given the following data;</u>
Mass, M1 = 5kg
Mass, M2 = 7kg
Velocity, V1 = 10m/s
Velocity, V2 = 0m/s (since it's at rest).
To find the total momentum;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
The law of conservation of momentum states that the total linear momentum of any closed system would always remain constant with respect to time.
Total momentum = M1V1 + M2V2
Substituting into the equation, we have;
Total momentum = 5*10 + 7*0
Total momentum = 50 + 0
<em>Total momentum = 50 kgm/s</em>
<em>Therefore, the total momentum of the bowling ball and the putty after they collide is 50 kgm/s. </em>