To develop this problem it is necessary to apply the Rayleigh Criterion (Angular resolution)criterion. This conceptos describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution. By definition is defined as:

Where,
= Wavelength
d = Width of the slit
= Angular resolution
Through the arc length we can find the radius, which would be given according to the length and angle previously described.
The radius of the beam on the moon is

Relacing 


Replacing with our values we have that,


Therefore the diameter of the beam on the moon is



Hence, the diameter of the beam when it reaches the moon is 7361.82m
Option e is true. The total energy is the sum of all the energies present in the system. The potential energy in a system is due to its position in the system.
<h3>What is the law of conservation of energy?</h3>
According to the Law of conservation of energy. Although energy cannot be generated or destroyed, it may be transferred from one form to another.
The following statements are true;
a)All of its energy must be potential energy before it falls.
b)At the conclusion of its fall, all of its energy must be transformed to kinetic energy.
c)During its fall, the sum of its kinetic and potential energy must match the initial quantity of potential energy.
d)Total energy = Kinetic Energy + Potential Energy.
Hence, option e is correct.
To learn more about the law of conservation of energy, refer ;
brainly.com/question/2137260
#SPJ2
Answer:
No photo or graph is there
Explanation:
Answer:
E/4
Explanation:
The formula for electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
Where;
E is the electric field
σ is the surface charge density
ε₀ is the electric constant.
Formula to calculate σ is;
σ = Q/A
Where;
Q is the total charge of the sheet
A is the sheet's area.
We are told the elastic sheet is a square with a side length as d, thus ;
A = d²
So;
σ = Q/d²
Putting Q/d² for σ in the electric field equation to obtain;
E = Q/(2ε₀d²)
Now, we can see that E is inversely proportional to the square of d i.e.
E ∝ 1/d²
The electric field at P has some magnitude E. We now double the side length of the sheet to 2L while keeping the same amount of charge Q distributed over the sheet.
From the relationship of E with d, the magnitude of electric field at P will now have a quarter of its original magnitude which is;
E_new = E/4
Answer:
The magnetic force on the section of wire is
.
Explanation:
Given that,
Current 
Length = 0.750 m
Magnetic field 
We need to calculate the magnetic force on the section of wire
Using formula of magnetic force


Since, 

Hence, The magnetic force on the section of wire is
.