1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
never [62]
3 years ago
6

The rocky surface of Earth, its atmosphere, its oceans, and all living things contain which of the following, which is also an e

xample of an element?
A) Water

B) Carbon dioxide

C) Sodium chloride

D) Carbon
Physics
2 answers:
VARVARA [1.3K]3 years ago
7 0
Carbon I hope this helps
mote1985 [20]3 years ago
4 0

Answer:

Carbon since the others are compounds of other elements

You might be interested in
(11%) Problem 5: A submarine is stranded on the bottom of the ocean with its hatch 25 m below the surface. In this problem, assu
V125BC [204]

Answer:

F = 1.24*10^4 N

Explanation:

Given

Depth of the ship, h = 25 m

Density of water, ρ = 1.03*10^3 kg/m³

Diameter of the hatch, d = 0.25 m

Pressure of air, P(air) = 1 atm

Pressure of water =

P(w) = ρgh

P(w) = 1.03*10^3 * 9.8 * 25

P(w) = 2.52*10^5 N/m²

P(net) = P(w) + P(air) - P(air)

P(net) = P(w)

P(net) = 2.52*10^5 N/m²

Remember,

Pressure = Force / Area, so

Force = Area * Pressure

Area = πr² = πd²/4

Area = 3.142 * 0.25²/4

Area = 3.142 * 0.015625

Area = 0.0491 m²

Force = 0.0491 * 2.52*10^5

F = 12373 N

F = 1.24*10^4 N

5 0
3 years ago
Read 2 more answers
Starting from rest, a disk rotates about its central axis with constant angular acceleration. In 1.00 s, it rotates 21.0 rad. Du
ELEN [110]

With constant angular acceleration \alpha, the disk achieves an angular velocity \omega at time t according to

\omega=\alpha t

and angular displacement \theta according to

\theta=\dfrac12\alpha t^2

a. So after 1.00 s, having rotated 21.0 rad, it must have undergone an acceleration of

21.0\,\mathrm{rad}=\dfrac12\alpha(1.00\,\mathrm s)^2\implies\alpha=42.0\dfrac{\rm rad}{\mathrm s^2}

b. Under constant acceleration, the average angular velocity is equivalent to

\omega_{\rm avg}=\dfrac{\omega_f+\omega_i}2

where \omega_f and \omega_i are the final and initial angular velocities, respectively. Then

\omega_{\rm avg}=\dfrac{\left(42.0\frac{\rm rad}{\mathrm s^2}\right)(1.00\,\mathrm s)}2=42.0\dfrac{\rm rad}{\rm s}

c. After 1.00 s, the disk has instantaneous angular velocity

\omega=\left(42.0\dfrac{\rm rad}{\mathrm s^2}\right)(1.00\,\mathrm s)=42.0\dfrac{\rm rad}{\rm s}

d. During the next 1.00 s, the disk will start moving with the angular velocity \omega_0 equal to the one found in part (c). Ignoring the 21.0 rad it had rotated in the first 1.00 s interval, the disk will rotate by angle \theta according to

\theta=\omega_0t+\dfrac12\alpha t^2

which would be equal to

\theta=\left(42.0\dfrac{\rm rad}{\rm s}\right)(1.00\,\mathrm s)+\dfrac12\left(42.0\dfrac{\rm rad}{\mathrm s^2}\right)(1.00\,\mathrm s)^2=63.0\,\mathrm{rad}

5 0
3 years ago
If a pickup is placed 16.25 cm from one of the fixed ends of a 65.00-cm-long string, which of the harmonics from n=1 to n=12 wil
Lina20 [59]

Answer:

The answer to this question can be defined as follows:

Explanation:

Therefore the 4th harmonicas its node is right and over the pickup so, can not be captured from 16.25, which is 1:4 out of 65. Normally, it's only conceptual for the certain harmonic, this will be low, would still be heard by the catcher.

Instead, every harmonic node has maximum fractions along its string; the very first node is the complete string length and the second node is half a mile to the third node, which is one-third up and so on.

4 0
3 years ago
To visit your favorite ice cream shop, you must travel 490 m west on Main Street and then 920 m south on Division Street. Suppos
topjm [15]

Answer:

a) The magnitude of your average velocity during the 121 s is 8.61 m/s.

b) The direction of the average velocity is 61.9° south of west.

c) Your average speed during the trip is 11.7 m/s

Explanation:

Hi there!

a) The average velocity (a.v) is calculated as the displacement divided by the time it took to do such a displacement.

The displacement is calculated as the distance between the initial position and the final position:

Displacement = Δ(x,y) = final position - initial position

Let's consider that your initial position is the origin of our frame of reference and let's also consider that west and south are positive directions (+x and +y respectively). Then the displacement vector will be:

Δ(x,y) = final positon - initial position

Δ(x,y) = (490, 920) m - (0, 0) m = (490, 920) m

The average velocity will be:

a.v = Δ(x,y) / t

a.v = (490, 920) m / 121 s

a.v = (4.05, 7.60) m/s

The magnitude of the average velocity is calculated as follows:

 

The magnitude of your average velocity during the 121 s is 8.61 m/s.

b) To find the direction of the average velocity, we have to use trigonometric rules of right triangles. Notice that the x and y-components of the average velocity (vx and vy) together with the average velocity vector (v), with magnitude 8.61 m/s, form a triangle (see figure).

Also, notice that v is the hypotenuse of the triangle and that vx is the side adjacent to the angle θ while vy is the side opposite to θ.

Using trigonometry, we can calculate the value of the angle θ:

cos θ = adjacent side / hypotenuse

cos θ = vx / v

cos θ = 4.05 m/s / 8.61 m/s

θ = 61.9°

The direction of the average velocity is 61.9° south of west.

c) The average speed (a.s) is calculated as the traveled distance (d) divided by the time it took to cover that distance (t). In total, you traveled (490 m + 920 m) 1410 m in 121 s, then the average speed will be:

a.s = d/t

a.s = 1410 m / 121 s

a.s = 11.7 m/s

Your average speed during the trip is 11.7 m/s

5 0
3 years ago
Two bodies of masses 1000kg and 2000kg are separated 1km which is the gravitational force between them
denpristay [2]

Answer:

1.33×10⁻¹⁰ N

Explanation:

F = GMm / r²

where G is the gravitational constant,

M and m are the masses of the objects,

and r is the distance between them.

F = (6.67×10⁻¹¹ N/m²/kg²) (1000 kg) (2000 kg) / (1000 m)²

F = 1.33×10⁻¹⁰ N

3 0
3 years ago
Other questions:
  • What is the efficiency of the machine in Figure 7.2 if the weight of the box is 200 N and required 98 N of effort Force?
    13·1 answer
  • which force will decrease if the surface of a ramp is made smoother. gravity, magnetism, friction, or electricity
    9·2 answers
  • What is kelvin?(scientifically plz)
    10·1 answer
  • What happens to the amount of friction if you increase the mass of an object?
    5·2 answers
  • The diagram shows two charged objects, X and Y.
    15·2 answers
  • 3. A 6 kg block moving to the right at 4 m/s collides with and sticks to a stationary block of unknown mass. If the two blocks m
    5·1 answer
  • Please help! the first person to answer this correctly will get a brainlist
    13·2 answers
  • A student moves a box across the floor by exerting 56.7 N of force and doing 195 J of
    13·1 answer
  • Can someone please give me the answers to this? ... please ...
    10·1 answer
  • The rate of change of velocity is called:.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!