Answer:
Generally, magnets are attracted to objects that are made of the metals iron, nickel, or cobalt. These materials are called ferromagnetic materials. ... When all or most of the domains are aligned in the same direction, the whole object becomes magnetized in that direction and becomes a magnet.
Explanation:
Answer:
it's because some versions have more steps and others have less
Answer:
The rate of change of the area when the bottom of the ladder (denoted by
) is at 36 ft. from the wall is the following:

Explanation:
The Area of the triangle is given by
where
(by using the Pythagoras' Theorem) and
is the length of the base of the triangle or the distance between the bottom of the ladder and the wall.
The area is then

The rate of change of the area is given by its time derivative


Product rule
Chain rule


In here we can identify
,
and
.
The result is then

The blank in the question can be filled with the word, “Graph”. Therefore, Graphs are the pictures which are in relationships.
<u>Explanation:
</u>
Graph usually represents a set of data which is nonlinear in occurrence and has some relationship between the two given data. And as graph are pictorial representation, it is simply assumed as the pictures of relationships.
For example, a graph can be drawn for the set of data for the presence of number of students of all the sections of the particular class of a school, as they are relative. But making the graph for number of students in all section of all class but different school cannot be done as non-relative.
Answer:
Impulse = 88 kg m/s
Mass = 8.8 kg
Explanation:
<u>We are given a graph of Force vs. Time. Looking at the graph we can see that the Force acts approximately between the time interval from 1sec to 4sec. </u>
Newton's Second Law relates an object's acceleration as a function of both the object's mass and the applied net force on the object. It is expressed as:
Eqn. (1)
where
: is the Net Force in Newtons (
)
: is the mass (
)
: is the acceleration (
)
We also know that the acceleration is denoted by the velocity (
) of an object as a function of time (
) with
Eqn. (2)
Now substituting Eqn. (2) into Eqn. (1) we have
Eqn. (3)
However since in Eqn. (3) the time-variable is present, as a result the left hand side (i.e.
is in fact the Impulse
of the cart ), whilst the right hand side denotes the change in momentum of the cart, which by definition gives as the impulse. Also from the graph we can say that the Net Force is approximately ≈
and
(thus just before the cut-off time of the force acting).
Thus to find the Impulse we have:

So the impulse of the cart is 
Then, we know that the cart is moving at
. Plugging in the values in Eqn. (3) we have:

So the mass of the cart is
.