The eroded rock and soil materials that are transported downstream by a river are called its load. A river transports, or carries, its load in three different ways: in solution, in suspension, and in its bed load.
Mineral matter that has been dissolved from bedrock is carried in solution. Common minerals carried in solution by rivers include dissolved calcium, magnesium, and bicarbonate. Most of a river’s solution load comes from groundwater seeping into the river. Before it reaches the stream,thegroundwaterhastraveledthroughfracturesinthebedrock, chemically eroding rock along the way.
When river water looks muddy, it is carrying rock material in suspension. Suspended material includes clay, silt, and fine sand. Although these suspended materials are heavier than water, the turbulence of the stream flow stirs them up and keeps them from sinking. Turbulence includes swirls and eddies that form in water as a result of friction between the stream and its channel. The faster a stream flows, the more turbulent and muddy it becomes. A rough or irregular channel also increases turbulence.
A river may also transport rock materials in its bed load. The bed load consists of sand, pebbles, and boulders that are too heavy to be carried in suspension. These heavier materials are moved along the streambed, especially during floods. Boulders and pebbles roll or slide along the river bed. Large sand grains are pushed along the bottom in a series of jumps and bounces.
The relative amounts of a river’s load that are carried in solution, in suspension, and in the bed load depend on the nature of the river, the climate, the type of bedrock, and the season of the year. As a general rule, most of the load carried by the world’s streams and rivers is carried in suspension. The size of a river’s suspended load increases with human land use. Road and building construction and removal of vegetation make it easier for rain to wash sediment into streams and rivers.
Answer:
I = 2172.46 A
Explanation:
Given that,
The length of a solenoid, l = 2.1 m
The inner radius of the solenoid, r = 28 cm = 0.28 m
The number of turns in the wire, N = 1000
The magnetic field in the solenoid, B = 1.3 T
We need to find the current carried by it. We know that, the magnetic field in a solenoid is given by :

Put all the values,

So, it carry current of 2172.46 A.
There are 3 forces acting on the stoplight:
• its weight <em>W</em>, with magnitude <em>W</em> = 100 N, pointing directly downward
• two tension forces <em>T</em>₁ and <em>T</em>₂ with equal magnitude <em>T</em>₁ = <em>T</em>₂ = <em>T</em> = 1000 N, both making an angle of <em>θ</em> with the horizontal, but one points left and the other points right
The stoplight is in equilibrium, so by Newton's second law, the net vertical force acting on it is 0, such that
∑ <em>F</em> = <em>T</em>₁ sin(<em>θ</em>) + <em>T</em>₂ sin(180° - <em>θ</em>) - <em>W</em> = 0
We have sin(180° - <em>θ</em>) = sin(<em>θ</em>) for all <em>θ</em>, so the above reduces to
2<em>T</em> sin(<em>θ</em>) = <em>W</em>
2 (1000 N) sin(<em>θ</em>) = 100 N
sin(<em>θ</em>) = 0.05
<em>θ</em> ≈ 2.87°
If <em>y</em> is the vertical distance between the stoplight and the ground, then
tan(<em>θ</em>) = (15 m - <em>y</em>) / (100 m)
Solve for <em>y</em> :
tan(2.87°) = (15 m - <em>y</em>) / (100 m)
<em>y</em> = 15 m - (100 m) tan(2.87°)
<em>y</em> ≈ 9.99 m
The answer is B. Nutrients.
Answer:
B. Its density is lower than that of water
Explanation:
density = mass / volume
density of the liquid = 85 / 100 = 0.85 g/cm^3
now,
density of water is 1 g/cm^3 which is greater than the density of the given liquid ( 0.85 g/cm^3 )