Answer:
x = 30°
Step-by-step explanation:
Donde 2θ - Φ = 60 °, tenemos;
∠QMN = ∠QPM
Ф + ∠P / 2 + (180 - θ) = 180 (Suma de ángulos en un triángulo ΔQLP)
Por lo tanto, Ф + ∠P / 2 - θ = 0
Por lo tanto, ∠P / 2 = θ - Ф, también
270 ° + θ + x + ∠P / 2 = 360 (Suma de ángulos en un NOLP cuadrilátero) da
270 ° + θ + x + θ - Ф = 270 ° + 2 · θ - Ф + x = 360
Como 2 · θ - Ф = 60 °, tenemos;
270 ° + 60 + x = 360
x = 360 - 270 - 60 = 30 °
its the third answer
Step-by-step explanation:
and its only 5 points not 30
Answer:
Step-by-step explanation:
product of slopes of perpendicular lines=-1
(t-5)/(3+4)×(2-3)/(-4-1)=-1
(t-5)/7×(-1/-5)=-1
(t-5)/35=-1
t-5=-1×35=-35
t=-35+5
t=-30
2.
slopes of parallel lines are equal.
(-2+3)/(t-4)=(-1-4)/(4+2)
1/(t-4)=-5/6
t-4=-6/5
t=4-6/5=(20-6)/5=14/5
3.
x>0,y<0
so P lies in4th quadrant.
except cos and sec all are negative.
so only cos and sec are positive.