Formula
Area = L*w
Hint : To find the area of a rectangle , multiply the length times the width
I hope that's help !
Answer:
c) 28°, 76°, 76°
Step-by-step explanation:
The two remote interior angles sum to 152°. Since they are congruent, their measures are 152°/2 = 76°. The adjacent interior angle is the supplement of 152°, so is 180°-152° = 28°.
The interior angles are 28°, 76°, 76°. . . . . matches choice C
5:3 x 6:2 can also be written as a fraction
5/3 x 6/2
Multiply across
30/6
Simplify
5/1
Rewrite
5:1 is your answer, or if your teacher does not want it simplified, 30:6
Hope I helped! :)
Answer:
Not independent
Explanation:
Two events are not independent/dependent if the result of one event affects the outcome of the other. In the case above, numbers are picked without replacement, therefore if one slip is picked then the other slip will be picked(slips are picked only once not twice or more as in independent events). Events would be independent if there was a replacement.
Answer:
The value is 
Step-by-step explanation:
From the question we are told that
The population proportion is 
The sample size is n = 563
Generally the population mean of the sampling distribution is mathematically represented as

Generally the standard deviation of the sampling distribution is mathematically evaluated as

=>
=>
Generally the probability that the proportion of persons with a college degree will differ from the population proportion by less than 5% is mathematically represented as

Here
is the sample proportion of persons with a college degree.
So
![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P(\frac{[[0.05 -0.52]]- 0.52}{0.02106} < \frac{[\^p - p] - p}{\sigma } < \frac{[[0.05 -0.52]] + 0.52}{0.02106} )](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%28%5Cfrac%7B%5B%5B0.05%20-0.52%5D%5D-%200.52%7D%7B0.02106%7D%20%3C%20%5Cfrac%7B%5B%5C%5Ep%20-%20p%5D%20-%20p%7D%7B%5Csigma%20%7D%20%20%3C%20%5Cfrac%7B%5B%5B0.05%20-0.52%5D%5D%20%2B%200.52%7D%7B0.02106%7D%20%29)
Here
![\frac{[\^p - p] - p}{\sigma } = Z (The\ standardized \ value \ of\ (\^ p - p))](https://tex.z-dn.net/?f=%5Cfrac%7B%5B%5C%5Ep%20-%20p%5D%20-%20p%7D%7B%5Csigma%20%7D%20%20%3D%20Z%20%28The%5C%20standardized%20%5C%20%20value%20%5C%20%20of%5C%20%20%28%5C%5E%20p%20-%20p%29%29)
=> ![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P[\frac{-0.47 - 0.52}{0.02106 } < Z < \frac{-0.47 + 0.52}{0.02106 }]](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%5B%5Cfrac%7B-0.47%20-%200.52%7D%7B0.02106%20%7D%20%20%3C%20%20Z%20%20%3C%20%5Cfrac%7B-0.47%20%2B%200.52%7D%7B0.02106%20%7D%5D)
=> ![P( - (0.05 - 0.52 ) < \^ p < (0.05 + 0.52 )) = P[ -2.37 < Z < 2.37 ]](https://tex.z-dn.net/?f=P%28%20-%20%280.05%20-%200.52%20%29%20%3C%20%20%5C%5E%20p%20%3C%20%20%280.05%20%2B%200.52%20%29%29%20%3D%20P%5B%20-2.37%20%3C%20%20Z%20%20%3C%202.37%20%5D)
=> 
From the z-table the probability of (Z < 2.37 ) and (Z < -2.37 ) is

and

So
=>
=>
=> 