Wavelength= v/f
v=c
3x10^8/8x10^14
3.8X10^-7
C
Answer:
correct answer is C
Explanation:
The time constant of an RC circuit is
τ = RC
so to find the capacitance
C = τ/ R
C = 2.150 / 5.20 10³
C = 4.13 10⁻⁴ F
to find the error we use the worst case
ΔC = |
the absolute value guarantees that we find the worst case, we evaluate the derivatives
ΔC = 1 /R Δτ + τ/R² ΔR
the absolute values of the errors are
Δτ = 0.002 s
ΔR = 0.3 kΩ
we substitute
ΔC = 0.002 /5.20 10³ + 2.150/(5.20 10³)² 0.3 10³
ΔC = 3.8 10⁻⁷ + 1.74 10⁻⁵
ΔC = 1.77 10⁻⁵ F
the uncertainty or error must be expressed with a significant figure
ΔC = 2 10⁻⁵ F
the percentage error is
Er% =
Er% =
Er% = 4.8%
the correct answer is C
When the velocity is increasing the acceleration increases too
Is there a multiple choice?
Answer:
h=17357.9m
Explanation:
The atmospheric pressure is just related to the weight of an arbitrary column of gas in the atmosphere above a given area. So, if you are higher in the atmosphere less gass will be over you, which means you are bearing less gas and the pressure is less.
To calculate this, you need to use the barometric formula:

Where R is the gas constant, M the molar mass of the gas, g the acceleration of gravity, T the temperature and h the height.
Furthermore, the specific gas constant is defined by:

Therefore yo can write the barometric formula as:

at the surface of the planet (h =0) the pressure is ![P_0[\tex]. The pressure at the height requested is half of that:[tex]P=\frac{P_0}{2}](https://tex.z-dn.net/?f=P_0%5B%5Ctex%5D.%20The%20pressure%20at%20the%20height%20requested%20is%20half%20of%20that%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DP%3D%5Cfrac%7BP_0%7D%7B2%7D)
applying to the previuos equation:

solving for h:
h=17357.9m