At the center of a 50 m diameter circular ice rink, if a 77 kg skater traveling at 2.3
m/s and then collides with a 63 kg skates traveling at 3.7 m/s. This is how
long it will take them to glide to the edge of the rink:
Speed after the collision= √{[77(2.3)77^2]
+ [63(3.7)^2]} / (77+63)=2.09 m/s
For them to be able to get to the edge
which is 50 m away it will take them 23.9
seconds.
1) 0.0011 rad/s
2) 7667 m/s
Explanation:
1)
The angular velocity of an object in circular motion is equal to the rate of change of its angular position. Mathematically:

where
is the angular displacement of the object
t is the time elapsed
is the angular velocity
In this problem, the Hubble telescope completes an entire orbit in 95 minutes. The angle covered in one entire orbit is
rad
And the time taken is

Therefore, the angular velocity of the telescope is

2)
For an object in circular motion, the relationship between angular velocity and linear velocity is given by the equation

where
v is the linear velocity
is the angular velocity
r is the radius of the circular orbit
In this problem:
is the angular velocity of the Hubble telescope
The telescope is at an altitude of
h = 600 km
over the Earth's surface, which has a radius of
R = 6370 km
So the actual radius of the Hubble's orbit is

Therefore, the linear velocity of the telescope is:

Answer:
100
Explanation:
Momentum (P) = Mass (M) × Velocity (V)
Momentum = 25kg × 4.0m/s
Momentum = 100kg m/s
Answer:
113 miles
Explanation:
45.00 x 2.50= 1.12.5 so 113 miles in 2.50 hours
Ionic compounds are made up of two charged species, a cation (+) and an anion (–).
The charges must balance out to zero for a stable ionic compound, because ionic bonds are formed between two charged species. They form in ratios according to their charges to balance out.