In physics, displacement is a physical quantity that is used to describe the overall change in the position of an object/person.
In other words, it describes how far you are from your initial position.
In the given problem, the initial position is the same as the final position. This means that overall change in position is zero, which also means that the difference between the final and initial positions is zero.
Based on the above, the displacement is zero.
Answer:
The magnitude of the magnetic field B is 5.921 T.
Explanation:
Given that,
Length = 4.1 mm



Current 
We need to calculate the magnetic field
Using formula of magnetic field

Put the value into the formula


Hence, The magnitude of the magnetic field B is 5.921 T.
Larger mass creates a stronger pull
Answer:
Explanation:
The magnetic force acting horizontally will deflect the wire by angle φ from the vertical
Let T be the tension
T cosφ = mg
Tsinφ = Magnetic force
Tsinφ = BiL , where B is magnetic field , i is current and L is length of wire
Dividing
Tanφ = BiL / mg
= .055 x 29 x .11 / .010 x 9.8
= 1.79
φ = 61° .
Tension T = mg / cosφ
= .01 x 9.8 / cos61
= .2 N .
¡Hellow!
For this problem, first, lets convert the seconds in hours:
5,4x10³
5400
h = sec / 3600
h = 5400 s / 3600
h = 1,5
Let's recabe information:
d (Distance) = 386 km
t (Time) = 1,5 h
v (Velocity) = ?
For calculate velocity, let's applicate formula:

Reeplace according we information:
386 km = v * 1,5 h
v = 386 km / 1,5 h
v = 257,33 km/h
The velocity of the train is of <u>257,33 kilometers for hour.</u>
<u></u>
Extra:
For convert km/h to m/s, we divide the velocity of km/h for 3,6:
m/s = km/h / 3,6
Let's reeplace:
m/s = 257,33 km/h / 3,6
m/s = 71,48
¿Good Luck?