Answer:
Part a)

Part b)

Part c)

Part d)

Explanation:
Part a)
As we know that the orbital speed of the satellite is given as

now we will have

now we have


now we have


Part b)
Here force between mars and satellite is the gravitational attraction force which is given as



Part c)
Acceleration of satellite is the ratio of gravitational force and mass of the satellite



Part d)
As we know by III law of kepler

here we know that T2 = 8 T1


so we have

as we know that speed is given as

so we can say since radius is orbit becomes 4 times so the orbital speed must be half

Need more than that to answer this question
Answer:
2.805 N
Explanation:
Given,
Current, I = 2.20 A
Length of the section,L = 0.750 m
Magnetic field, B = 1.70 T
θ = 90°
Magnetic Force,F = ?
We know,
F = IBL sin θ
F = 2.20 x 1.70 x 0.750 x sin 90°
F = 2.805 N
Hence, magnetic force is equal to 2.805 N.
Answer:
The net acceleration of the boat is approximately 6.12 m/s² downwards
Explanation:
The buoyant or lifting force applied to the boat = 790 N
The mass of the boat lifted by the buoyant force = 214 kg
The force applied to a body is defined as the product of the mass and the acceleration of the body. Therefore, the buoyant force, F, acting on the boat can be presented as follows;
Fₐ = F - W
The weight of the boat = 214 × 9.81 = 2099.34 N
Therefore;
Fₐ = 790 - 2099.34 = -1309.34 N
Fₐ = Mass of the boat × The acceleration of the boat
Given that the buoyant force, Fₐ, is the net force acting on the boat, we have;
F = Mass of the boat × The net acceleration of the boat
F = -1309.34 N = 214 kg × The net acceleration of the boat
∴ The net acceleration of the boat = -1309.34 N/(214 kg) ≈ -6.12 m/s²
The net acceleration of the boat ≈ 6.12 m/s² downwards