Answer:
Vertex: (3,0)
Max/min: min
axis of symmetry: x=3
Domain: (-∞,∞)
Range: [3,∞)
zeroes: (3,0)
Step-by-step explanation:
Vertex is where the graph changes directions (so in this case it's the point where it changes from decreasing to increasing) which I think is (3,0)
It's a minimum because the coefficent for the degree is positive
The axis of symmetry is just the x value of the vertex (which is x= 3)
the domain is all possible x values (-∞,∞)
The range is all possible y values [3,∞)
The zeroes is where the line hits the x axis, which is (3,0)
Answer:
y = 9.6
Step-by-step explanation:
mark brainliest
Answer:

Step-by-step explanation:
Let's sketch graphs of functions f(x) and g(x) on one coordinate system (attachment).
Let's calculate the common points:
![x^2=\sqrt{x}\qquad\text{square of both sides}\\\\(x^2)^2=\left(\sqrt{x}\right)^2\\\\x^4=x\qquad\text{subtract}\ x\ \text{from both sides}\\\\x^4-x=0\qquad\text{distribute}\\\\x(x^3-1)=0\iff x=0\ \vee\ x^3-1=0\\\\x^3-1=0\qquad\text{add 1 to both sides}\\\\x^3=1\to x=\sqrt[3]1\to x=1](https://tex.z-dn.net/?f=x%5E2%3D%5Csqrt%7Bx%7D%5Cqquad%5Ctext%7Bsquare%20of%20both%20sides%7D%5C%5C%5C%5C%28x%5E2%29%5E2%3D%5Cleft%28%5Csqrt%7Bx%7D%5Cright%29%5E2%5C%5C%5C%5Cx%5E4%3Dx%5Cqquad%5Ctext%7Bsubtract%7D%5C%20x%5C%20%5Ctext%7Bfrom%20both%20sides%7D%5C%5C%5C%5Cx%5E4-x%3D0%5Cqquad%5Ctext%7Bdistribute%7D%5C%5C%5C%5Cx%28x%5E3-1%29%3D0%5Ciff%20x%3D0%5C%20%5Cvee%5C%20x%5E3-1%3D0%5C%5C%5C%5Cx%5E3-1%3D0%5Cqquad%5Ctext%7Badd%201%20to%20both%20sides%7D%5C%5C%5C%5Cx%5E3%3D1%5Cto%20x%3D%5Csqrt%5B3%5D1%5Cto%20x%3D1)
The area to be calculated is the area in the interval [0, 1] bounded by the graph g(x) and the axis x minus the area bounded by the graph f(x) and the axis x.
We have integrals:
![\int\limits_{0}^1(\sqrt{x})dx-\int\limits_{0}^1(x^2)dx=(*)\\\\\int(\sqrt{x})dx=\int\left(x^\frac{1}{2}\right)dx=\dfrac{2}{3}x^\frac{3}{2}=\dfrac{2x\sqrt{x}}{3}\\\\\int(x^2)dx=\dfrac{1}{3}x^3\\\\(*)=\left(\dfrac{2x\sqrt{x}}{2}\right]^1_0-\left(\dfrac{1}{3}x^3\right]^1_0=\dfrac{2(1)\sqrt{1}}{2}-\dfrac{2(0)\sqrt{0}}{2}-\left(\dfrac{1}{3}(1)^3-\dfrac{1}{3}(0)^3\right)\\\\=\dfrac{2(1)(1)}{2}-\dfrac{2(0)(0)}{2}-\dfrac{1}{3}(1)}+\dfrac{1}{3}(0)=2-0-\dfrac{1}{3}+0=1\dfrac{1}{3}](https://tex.z-dn.net/?f=%5Cint%5Climits_%7B0%7D%5E1%28%5Csqrt%7Bx%7D%29dx-%5Cint%5Climits_%7B0%7D%5E1%28x%5E2%29dx%3D%28%2A%29%5C%5C%5C%5C%5Cint%28%5Csqrt%7Bx%7D%29dx%3D%5Cint%5Cleft%28x%5E%5Cfrac%7B1%7D%7B2%7D%5Cright%29dx%3D%5Cdfrac%7B2%7D%7B3%7Dx%5E%5Cfrac%7B3%7D%7B2%7D%3D%5Cdfrac%7B2x%5Csqrt%7Bx%7D%7D%7B3%7D%5C%5C%5C%5C%5Cint%28x%5E2%29dx%3D%5Cdfrac%7B1%7D%7B3%7Dx%5E3%5C%5C%5C%5C%28%2A%29%3D%5Cleft%28%5Cdfrac%7B2x%5Csqrt%7Bx%7D%7D%7B2%7D%5Cright%5D%5E1_0-%5Cleft%28%5Cdfrac%7B1%7D%7B3%7Dx%5E3%5Cright%5D%5E1_0%3D%5Cdfrac%7B2%281%29%5Csqrt%7B1%7D%7D%7B2%7D-%5Cdfrac%7B2%280%29%5Csqrt%7B0%7D%7D%7B2%7D-%5Cleft%28%5Cdfrac%7B1%7D%7B3%7D%281%29%5E3-%5Cdfrac%7B1%7D%7B3%7D%280%29%5E3%5Cright%29%5C%5C%5C%5C%3D%5Cdfrac%7B2%281%29%281%29%7D%7B2%7D-%5Cdfrac%7B2%280%29%280%29%7D%7B2%7D-%5Cdfrac%7B1%7D%7B3%7D%281%29%7D%2B%5Cdfrac%7B1%7D%7B3%7D%280%29%3D2-0-%5Cdfrac%7B1%7D%7B3%7D%2B0%3D1%5Cdfrac%7B1%7D%7B3%7D)
Answer:

Step-by-step explanation:
![\sf h(x) = 5x+2\\\\Put \ h(x) = -8\\\\-8 = 5x+2\\\\Subtract \ 2 \ to \ both \ sides\\\\-8-2 = 5x\\\\-10 = 5x\\\\Divide\ both \ sides \ by \ 5\\\\-10 / 5 = x \\\\x = -2 \\\\\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Csf%20h%28x%29%20%3D%205x%2B2%5C%5C%5C%5CPut%20%5C%20h%28x%29%20%3D%20-8%5C%5C%5C%5C-8%20%3D%205x%2B2%5C%5C%5C%5CSubtract%20%5C%202%20%5C%20to%20%5C%20both%20%5C%20sides%5C%5C%5C%5C-8-2%20%3D%205x%5C%5C%5C%5C-10%20%3D%205x%5C%5C%5C%5CDivide%5C%20both%20%5C%20sides%20%5C%20by%20%5C%205%5C%5C%5C%5C-10%20%2F%205%20%3D%20x%20%5C%5C%5C%5Cx%20%3D%20-2%20%5C%5C%5C%5C%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>