9 7/10 divided by 3/5 =
97/10 divided by 3/5 =
97/10 * 5/3 =
97/6 = 16 1/6
Answer:
From your question, I am assuming you are talking about an absolute value graph. In this case the answer would be y = |2 + 6|
Step-by-step explanation: Always remember, when you are graphing absolute value graphs:
When you shift left or right, you put the amount you are shifting inside the absolute value sign.
When you are shifting up or down, you put the amount you are shifting outside the absolute value sign.
When shifting left on a graph, you usually think of subtraction. However, when dealing with absolute value graphs, when you are shifting left, you use addition, as you can see in this problem.
The same goes for right. You use subtraction when shifting right, contrary to what you may think.
However, when you go up, you still use addition, and when you shift down, you still use subtraction.
Answer:
3x = 5
Step-by-step explanation:
9x = 4x + 5
-4x -4x
3x = 5
Answer:
IS NOT; ARE NOT
Step-by-step explanation:
Given: ![\[ \begin{bmatrix} \frac{1}{4} & \frac{1}{4}\\ \\-1 & \frac{-1}{2} \end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5B%20%20%5Cbegin%7Bbmatrix%7D%20%20%20%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B1%7D%7B4%7D%5C%5C%20%20%20%20%5C%5C-1%20%26%20%5Cfrac%7B-1%7D%7B2%7D%20%5Cend%7Bbmatrix%7D%5C%5D)
and ![\[A = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\\\ -1 & \frac{-1}{2} \end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5BA%20%3D%20%20%5Cbegin%7Bbmatrix%7D%20%20%20%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B1%7D%7B4%7D%20%5C%5C%5C%5C%20%20%20%20-1%20%26%20%5Cfrac%7B-1%7D%7B2%7D%20%20%5Cend%7Bbmatrix%7D%5C%5D)
We say two matrices
and
are inverses of each other when
where
is the identity matrix.
![\[I = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5BI%20%3D%20%20%5Cbegin%7Bbmatrix%7D%20%20%20%201%20%26%200%5C%5C%20%20%20%200%20%26%201%20%20%5Cend%7Bbmatrix%7D%5C%5D)
So, for
and
to be inverses of each other, we should have
.
Let us calculate
.
![\[\begin{bmatrix} -2 & -1 \\ 8 & 2 \end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5B%5Cbegin%7Bbmatrix%7D%20-2%20%26%20-1%20%5C%5C%208%20%26%202%20%5Cend%7Bbmatrix%7D%5C%5D)
![\[\begin{bmatrix} \frac{1}{4} & \frac{1}{4} \\\\ -1 & \frac{-1}{2}\end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5B%5Cbegin%7Bbmatrix%7D%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B1%7D%7B4%7D%20%5C%5C%5C%5C%20-1%20%26%20%5Cfrac%7B-1%7D%7B2%7D%5Cend%7Bbmatrix%7D%5C%5D)
![\[\begin{bmatrix}\frac{1}{2} & 0 \\0 & 0 \end{bmatrix}\]](https://tex.z-dn.net/?f=%5C%5B%5Cbegin%7Bbmatrix%7D%5Cfrac%7B1%7D%7B2%7D%20%26%200%20%5C%5C0%20%26%200%20%5Cend%7Bbmatrix%7D%5C%5D)
This is clearly not equal to the identity matrix. So we conclude that the matrices are not inverses of each other.
ANSWER
Both

are rational.
EXPLANATION
Recall that, a rational number can be written in the form

and also, a and b, are integers.
This means that, if the expression can be written as a common fraction, then it is a rational number.
Let us see whether we can rewrite the given expressions as common fractions.

also,

Therefore the given expressions are all rational.
The correct answer is A.