1.)
Velocity is in m/s, and acceleration is in m/s^2 like you said. Because of this, we can calculate this by dividing the speed by the time it took to get to that speed.
(20 meters/second) / 10 seconds = 2 meters/ second^2
2.)
Same thing with the first one.
(100 meters/second) / 4 seconds = 25 meters / seconds^2
The power delivered is equal to the product between the voltage V and the current I:

This power is delivered for a total time of

, so the total energy delivered to the battery is
P=I^2 *R
600 =5.0^2 *R
R=24
Answer: 24 ohms
I hope it’s correcttttttt...
Resistance = (voltage) / (current)
Resistance = (120 V) / (0.5 A)
<em>Resistance = 240 ohms</em>
<em></em>
Know what ? There might be too much information given in this question. I want to check, because it's possible that it might not even all fit together.
To calculate my answer, I only used the voltage and the current. I didn't use the "60 watts", and I'm curious to know whether it even fits with the given voltage and current.
Power = (voltage) times (current).
Power = (120 V) times (0.5 A)
Power = 60 watts
Well gadzooks and sure enough ! The three numbers given in the question all go together nicely.
And not only THAT !
The answer could have been calculated by using ANY TWO of them.