This statement is true. The point located at the geometric center of an object is indeed called the object's center of gravity. Center of gravity is the average of the weight of a resultant of the parallel forces, including all the particles that is passing through its body.
Answer:
Explanation:
A 40kg child throw stone of 0.5kg
At a direction of 5m/s
Recoil can be calculated using recoil of a gun formula
m_1•v_1 + m_2•v_2
m_1•v_1 = -m_2•v_2
The negative sign show that the momentum of the boy is directed oppositely to that of the stone
m_1 Is mass of boy
v_1 is the recoil velocity of the boy
m_2 is mass of stone
v_2 is the velocity of stone
Then,
m_1•v_1 = -m_2•v_2
40•v_1 = -0.5 × 5
40•v_1 = -2.5
v_1 = -2.5 / 40
v_1 = -0.0625 m/s
The recoil velocity of the boy is 0.0625 m/s
Average velocity =
(displacement) / (time for the displacement)
and
(direction of the displacement) .
Displacement =
(distance from the start-point to the end-point)
and
(direction from the start-point to the end-point) .
When Ben is 200 meters from the corner store,
he is (500 - 200) = 300 meters from his house.
His displacement is
300 meters in the direction
from his house to the neighbor .
His average velocity is
(300/910) = 0.33 meters per second, in the
direction from his house to the neighbor .
Answer:
Subtract the atomic number from the mass number
Explanation:
The number of neurons in an atom is equal to the difference between the atomic number and the mass number
Answer:
v = √[gR (sin θ - μcos θ)]
Explanation:
The free body diagram for the car is presented in the attached image to this answer.
The forces acting on the car include the weight of the car, the normal reaction of the plane on the car, the frictional force on the car and the net force on the car which is the centripetal force on the car keeping it in circular motion without slipping.
Resolving the weight into the axis parallel and perpendicular to the inclined plane,
N = mg cos θ
And the component parallel to the inclined plane that slides the body down the plane at rest = mg sin θ
Frictional force = Fr = μN = μmg cos θ
Centripetal force responsible for keeping the car in circular motion = (mv²/R)
So, a force balance in the plane parallel to the inclined plane shows that
Centripetal force = (mg sin θ - Fr) (since the car slides down the plane at rest, (mg sin θ) is greater than the frictional force)
(mv²/R) = (mg sin θ - μmg cos θ)
v² = R(g sin θ - μg cos θ)
v² = gR (sin θ - μcos θ)
v = √[gR (sin θ - μcos θ)]
Hope this Helps!!!