I think it's B hope it helps
We divide the thin rectangular sheet in small parts of height b and length dr. All these sheets are parallel to b. The infinitesimal moment of inertia of one of these small parts is

where

Now we find the moment of inertia by integrating from

to

The moment of inertia is

(from (-a/2) to

(a/2))
The velocities and the speed build a triangle, where the 1.7 m/s are the hypotenuse and the x-velocity and y-velocity are the other sides.
<span>So the x-velocity is: speed*cos(angle) </span>
<span>now plug in </span>
<span>x=1.7 m/s * cos(18.5)=1.597 m/s </span>
Answer:
stop, drop and roll.
Explanation:
This is because rolling on the ground can help put out the fire by depriving it of oxygen.
Answer:
Speed at which the ball passes the window’s top = 10.89 m/s
Explanation:
Height of window = 3.3 m
Time took to cover window = 0.27 s
Initial velocity, u = 0m/s
We have equation of motion s = ut + 0.5at²
For the top of window (position A)

For the bottom of window (position B)


We also have

Solving

So after 1.11 seconds ball reaches at top of window,
We have equation of motion v = u + at

Speed at which the ball passes the window’s top = 10.89 m/s