Im fairly certain that the answer would be D, and this is because of the law of conservation of energy/momentum.
Answer:
2.85 m
Explanation:
From trigonometry,
Cosine = Adjacent/Hypotenuse
Assuming, The wall, the ladder and the ladder forms a right angle triangle as shown in fig 1, in the diagram attached below.
cos∅ = a/H....................... Equation 1
Where ∅ = Angle the ladder makes with the horizontal, a = The horizontal distance from the bottom of the ladder to the wall, H = The length of the ladder.
make a the subject of the equation
a = cos∅(H)..................... Equation 1
Given: ∅ = 68 °, H = 7.6 m.
Substitute into equation 2
a = cos(68)×7.6
a = 0.375×7.6
a = 2.85 m.
Hence the horizontal distance from the bottom of the ladder to the wall = 2.85 m
Gravitational acceleration (Ga) is inversely proportional to k / Distance^2
so Ga * Distance^2 = K
On the surface of Earth acceleration due to gravity is about 9.8m/s^2 with an average distance to the earths core of about 6371 km (Wolfram alpha).
So k = 9.8 * 6371^2
I'm presuming that your distance of 116 is km
As
Ga = k / distance^2
Ga = ((9.8 * 6371^2) / (6371 + 116)^2 ) = 397778481.8 / 42081169
= 9.45 m/s^2 to 2sf
Answer:
0.3 %
Explanation:
Earth cleans and replenishes the water supply through the hydrologic cycle. The earth has an abundance of water, but unfortunately, only a small percentage, is even usable by people.