1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lina2011 [118]
4 years ago
9

A 2 kg package is released on a 53.1° incline, 4 m from a long spring with force constant k = 140 N/m that is attached at the bo

ttom of the incline (Fig. 7-32). The coefficients of friction between the package and the incline are µs = 0.4 and µk= 0.2. The mass of the spring is negligible.A. What is the speed of the package just before it reaches the spring?
B. What is the maximum compression of the spring?
C. The package rebounds back up the incline. How close does it get to its initial position?
Physics
1 answer:
Aneli [31]4 years ago
3 0

Answer:

A) The speed of the package just before it reaches the spring = 7.31 m/s

B) The maximum compression of the spring is 0.9736m

C) It is close to it's initial position by 0.57m

Explanation:

A) Let's talk about the motion;

As the block moves down the inclines plane, friction is doing (negative) work on the block while gravity is doing (positive) work on the block.

Thus, the maximum force due to

static friction must be less than the force of gravity down the inclined plane in order for the block to slide down.

Since the block is sliding down the inclined plane, we'll have to use kinetic friction when calculating the amount of work (net) on the block.

Thus;

∆Kt + ∆Ut = ∆Et

∆Et = ∫|Ff| |ds| = - Ff L

Where Ff is the frictional force.

So ∆Kt + ∆Ut = - Ff L

And so;

(1/2)m((vf² - vo²) + mg(yf - yo) = - Ff L

Resolving this for v, we have;

V = √(2gL(sinθ - μkcosθ)

V = √(2 x 9.81 x 4) (sin53.1 - 0.2 cos53.1)

V = √(78.48) (0.68))

V = √(53.3664)

V= 7.31 m/s

B) For us to find the maximum compression of the spring, let's use the change in kinetic energy, change in potential energy and the work done by friction.

If we start from the top of the incline plane, the initial and final kinetic energy of the block is zero:

Thus,

∆Kt + ∆Ut = ∆Et

And,

∆E = −Ff ∆s

Thus;

mg(yo - yf) + (k/2)(∆(sf)² - ∆(so)² = −Ff ∆s

Now let's solve it by putting these values;

yf − y0 = −(L + ∆d) sin θ; ∆s = L + ∆d; ∆sf = ∆d; and ∆s0 = 0 where ∆d is the maximum compression in the spring.

So, we have;

((1/2 )(K)(∆d )²) − ∆d (mg sin θ − (µk)mg cos θ) + ((µk)mgLcos θ − mgLsin θ) = 0

Let's rearrange this for easy solution.

((1/2)(K)(∆d)²) − ∆d (mg sin θ − (µk)mg cos θ) - L(mgsin θ - (µk)mgcos θ) = 0

Divide each term by (mgsin θ - (µk)mgcos θ) to get;

[((K/2)(∆d)²)}/{(mgsin θ - (µk)mgcos θ)}] - ∆d - L = 0

Putting k = 140,m = 2kg, µk = 0.2 and θ = 53.1° and L=4m, we obtain;

5.247(∆d)² - ∆d - 4 = 0

Solving as a quadratic equation;

∆d = 0.9736m

C) let’s find out how high the block rebounds up the inclined plane with the fact that final and initial kinetic energy is zero;

mg(yf − yo) + 1 /2 k (∆s f² − ∆s o²) = −Ff ∆s

Now let's solve it by putting these values; yf − y0 = (L′ + ∆d)sin θ; ∆s = L′ + ∆d; ∆sf = 0; and ∆s0 = ∆d.

L' is the distance moved up the inclined plane

So we have;

(1/2)k∆d² + mg(∆d + L′)sin θ =

-(µk)mg cos θ (∆d + L′)

Making L' the subject of the formula, we have;

L' = [(1/2)k∆d²] /(mg sin θ + (µk)mg cos θ)] - ∆d

L' = [(140/2)(0.9736²)] /(2 x 9.81 sin51.3) + (0.2 x 2 x 9.81cos 53.1)] - 0.9736

L' = (66.353)/[(15.696) + (2.3544)]

L' = (66.353)/18.05 = 3.43m

This is the distance moved up the inclined plane. So it's distance feom it's initial position is 4m - 3.43m = 0.57m

You might be interested in
Which will speed up a chemical reaction? Apply heat. Increase the concentration of the reactants. Grind up the substance, so the
makkiz [27]
All of the above options are correct
8 0
3 years ago
A responder can protect himself/herself from radiation by using shielding as a response action. What materials are best for prot
Irina-Kira [14]

Answer:

Few millimeter thick aluminium, water, wood, acrylic glass or plastic.

Explanation:

The materials that are best for protection against beta particles are few millimeter thickness of aluminium, but for the high energy beta-particles radiations the low atomic mass materials such as plastic, wood, water and acrylic glass can be used.

These materials can also be used in personal protective equipment which includes all the clothing that can be worn to prevent any injury or illness due to the exposure to radiation.

3 0
3 years ago
Phosphorus (P) is an element with an atomic number of 15 and an atomic mass of 31. How many neutrons are in an atom of phosphoru
BaLLatris [955]

(31-15 = 16).

Explanation:

the element phosphorus (P) has an atomic number of 15 and a mass number of 31. Therefore, an atom of phosphorus has 15 protons, 15 electrons, and 16 neutrons

5 0
3 years ago
A cell phone sending a text message what kinda energy is to the scenario?
creativ13 [48]

Answer:

low powered radio frequency (RF) energy

7 0
3 years ago
the force is found by multiplying the mass of an object by velocity at which it travels. true or false
Katarina [22]

False.

Force is found by multiplying mass of an object by its acceleration.

F = mass * acceleration

4 0
4 years ago
Other questions:
  • The planet closest to the sun that has a dense iron core and no moons would most likely be?. A. Mars. B. Mercury. C. Earth. D. V
    13·1 answer
  • If an unknown element has a mass number of 14 and you are told that it has 7 neutrons how many protons dose it have
    13·1 answer
  • If a current flowing through a lightbulb is 0.75 ampere and the voltage difference across the lightbulb is 120 volts, how much r
    8·1 answer
  • (a) The volume flow rate in an artery supplying the brain is 3.4 x 10-6 m3/s. If the radius of the artery is 5.6 mm, determine t
    8·1 answer
  • What factors would change the force of friction?​
    8·1 answer
  • . A block is placed on an incline. The coefficient of static friction between the block and the plane is 0.59. What is the maxim
    8·1 answer
  • 1. A 1 kg cart moving with a speed of 3 m/s collides with a 2 kg cart at rest. If the carts stick together after the collision,
    5·1 answer
  • What type of force is often seen in suspension bridges?​
    14·2 answers
  • What effort force must be applied to lift an 864 N load with a fixed pulley?
    7·1 answer
  • 450 nm of light falls on a single slit of width 0.30 mm. What is the angular width of the central diffraction peak
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!