Answer:
Time needed: 2.5 s
Distance covered: 31.3 m
Explanation:
I'll start with the distance covered while decelerating. Since you know that the initial speed of the car is 15.0 m/s, and that its final speed must by 10.0 m/s, you can use the known acceleration to determine the distance covered by
v2f=v2i−2⋅a⋅d
Isolate d on one side of the equation and solve by plugging your values
d=v2i−v2f2a
d=(15.02−10.02)m2s−22⋅2.0ms−2
d=31.3 m
To get the time needed to reach this speed, i.e. 10.0 m/s, you can use the following equation
vf=vi−a⋅t, which will get you
t=vi−vfa
t=(15.0−10.0)ms2.0ms2=2.5 s
The time it takes the plane to change its velocity is 9s.
<h3>What is time?</h3>
Time can be defined the measured or measurable period during which an action, process, or condition exists or continues.
To calculate the time it takes the airplane to change its velocity, we use the formula below.
Formula:
- t = (v-u)/a.......... Equation 1
Where:
- a = Acceleration
- v = Final velocity
- u = Initial velocity
- t = time
From the question,
- v = 40 m/s
- u = 22 m/s
- a = 2 m/s²
Substitute these values into equation 1
- t = (40-22)/2
- t = 18/2
- t = 9s
Hence, the time it takes the plane to change its velocity is 9s.
Learn more about time here: brainly.com/question/2854969
Going to college and passing all your classes
Answer:
g ≈ 7.4 m/s²
Explanation:
The acceleration due to gravity on planet XX is ...
g = GM/r² = (6.67·10^-11 × 4·10^22)/(6·10^5)^2
g ≈ 7.4 m/s²
Answer:
t = 12s
Explanation:
Given:
v-initial = 0 m/s
x = 360 m
a = 5.0 m/s^2
Solve:
x = (v-initial)t + 1/2(a*t^2)
360 = 0t + 1/2 (5.0t^2)
360 = 2.5 t^2
144 = t^2
t = sqrt(144) = 12
Therefore, it takes 12 seconds.