1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Annette [7]
2 years ago
8

HELP ASAP Evaluate each expression. Make sure to show your work (-4) - 44 - (-1)

Mathematics
1 answer:
Alja [10]2 years ago
5 0

Answer:

-47

Step-by-step explanation:

remove unnecessary parentheses

-4-44-(-1)

calculate the sum or different

-47

You might be interested in
Solve the problem and then click on the correct graph.<br><br> y = |x|
Zielflug [23.3K]

Answer:

Attachment is correct graph.

Step-by-step explanation:

We are given a equation of line y=|x|

It is absolute function which gives always positive value.

It's vertex at (0,0). This function will break at (0,0)

It is linear equality.

f(x)=\left \{ {-x{\ \ \ \ \ \ x

So, function is break at point x=0

Now we make tale of x and y

    x       y  

   -3       3

   -2       2

   -1        1

    0       0

    1        1

    2       2

    3       3

Now we plot the point on graph and join the points to get graph.

Please see the attachment for correct graph.


8 0
3 years ago
Can anybody help plzz?? 65 points
Yakvenalex [24]

Answer:

\frac{dy}{dx} =\frac{-8}{x^2} +2

\frac{d^2y}{dx^2} =\frac{16}{x^3}

Stationary Points: See below.

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Equality Properties

<u>Calculus</u>

Derivative Notation dy/dx

Derivative of a Constant equals 0.

Stationary Points are where the derivative is equal to 0.

  • 1st Derivative Test - Tells us if the function f(x) has relative max or mins. Critical Numbers occur when f'(x) = 0 or f'(x) = undef
  • 2nd Derivative Test - Tells us the function f(x)'s concavity behavior. Possible Points of Inflection/Points of Inflection occur when f"(x) = 0 or f"(x) = undef

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{8}{x} +2x

<u>Step 2: Find 1st Derivative (dy/dx)</u>

  1. Quotient Rule [Basic Power]:                    f'(x)=\frac{0(x)-1(8)}{x^2} +2x
  2. Simplify:                                                      f'(x)=\frac{-8}{x^2} +2x
  3. Basic Power Rule:                                     f'(x)=\frac{-8}{x^2} +1 \cdot 2x^{1-1}
  4. Simplify:                                                     f'(x)=\frac{-8}{x^2} +2

<u>Step 3: 1st Derivative Test</u>

  1. Set 1st Derivative equal to 0:                    0=\frac{-8}{x^2} +2
  2. Subtract 2 on both sides:                         -2=\frac{-8}{x^2}
  3. Multiply x² on both sides:                         -2x^2=-8
  4. Divide -2 on both sides:                           x^2=4
  5. Square root both sides:                            x= \pm 2

Our Critical Points (stationary points for rel max/min) are -2 and 2.

<u>Step 4: Find 2nd Derivative (d²y/dx²)</u>

  1. Define:                                                      f'(x)=\frac{-8}{x^2} +2
  2. Quotient Rule [Basic Power]:                  f''(x)=\frac{0(x^2)-2x(-8)}{(x^2)^2} +2
  3. Simplify:                                                    f''(x)=\frac{16}{x^3} +2
  4. Basic Power Rule:                                    f''(x)=\frac{16}{x^3}

<u>Step 5: 2nd Derivative Test</u>

  1. Set 2nd Derivative equal to 0:                    0=\frac{16}{x^3}
  2. Solve for <em>x</em>:                                                    x = 0

Our Possible Point of Inflection (stationary points for concavity) is 0.

<u>Step 6: Find coordinates</u>

<em>Plug in the C.N and P.P.I into f(x) to find coordinate points.</em>

x = -2

  1. Substitute:                    f(-2)=\frac{8}{-2} +2(-2)
  2. Divide/Multiply:            f(-2)=-4-4
  3. Subtract:                       f(-2)=-8

x = 2

  1. Substitute:                    f(2)=\frac{8}{2} +2(2)
  2. Divide/Multiply:            f(2)=4 +4
  3. Add:                              f(2)=8

x = 0

  1. Substitute:                    f(0)=\frac{8}{0} +2(0)
  2. Evaluate:                      f(0)=\text{unde} \text{fined}

<u>Step 7: Identify Behavior</u>

<em>See Attachment.</em>

Point (-2, -8) is a relative max because f'(x) changes signs from + to -.

Point (2, 8) is a relative min because f'(x) changes signs from - to +.

When x = 0, there is a concavity change because f"(x) changes signs from - to +.

3 0
3 years ago
The scale on a drawing of a swimming pool is 1cm=4m. What is the actual length of the pool if it's 10cm long on the drawing
Usimov [2.4K]

1 cm was multiplied by ten, so wee need to do that on the other side too.

1 times 10 = 10 cm, so 4 times 10 = 40 meters,
So your answer is 40 meters. Hope it helps!
4 0
3 years ago
Read 2 more answers
By definition, the determinant equals ad - bc. What is the value of when x = -2 and y = 3? I NEED HELP PLEASE
sergiy2304 [10]

Answer:

<h3>B. -84</h3>

Step-by-step explanation:

Taking the determinant of the matrices we will have;

= 4x(5y) - 2x(3y)

= 20xy - 6xy

= 14xy

Given x = -2 and y = 3

Determinant = 14(-2)(3)

Determinant = -28*3

Determinant = -84

4 0
2 years ago
Need help solving this problem ​
natka813 [3]

Answer:

Part 1: \frac{11-x}{5} or \frac{11}{5}-\frac{x}{5}

Part 2: \frac{9}{5}

Step-by-step explanation:

To start things off, you must put everything on the opposite side of y so that you only have the y variable left.

In this case, put x onto the other side, making it negative since it's flipped, so you get 5y=11-x (since the x is negative you're using subtraction from 11).

Next, divide both sides by 5 to make 5y into y:

\frac{5y}{5} =\frac{11}{5}-\frac{x}{5}

y=\frac{11}{5}-\frac{x}{5}

Then in this case you turn y=f(x), but the system did it for you, so all you have to put is \frac{11}{5}-\frac{x}{5}.

For the second part you must replace x with 2 since you need to find f(2).

\frac{11-2}{5}

Your answer for part 2 is \frac{9}{5}.

3 0
2 years ago
Other questions:
  • Lashonda made $80 for 5 hours of work.
    12·2 answers
  • If D is the midpoint of the segment
    8·1 answer
  • Write the contrapositive of the conditional statement. Determine whether the contrapositive is true or false. If it is false, fi
    10·2 answers
  • I WILL MARK BRAINLIEST IF YOU GET IT CORRECT!
    8·2 answers
  • I need to find the surface of the figure
    14·2 answers
  • H - 20/j = k solve for j
    13·1 answer
  • Samual walk foward 19 steps. He represents this movement with a positive 19. How would he represent the opposite of this number?
    7·2 answers
  • The PRODUCT of 25 and x.
    9·1 answer
  • help me pls pls pls
    15·2 answers
  • What is 934-1?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!