<span>Consider a angle â BAC and the point D on its defector
Assume that DB is perpendicular to AB and DC is perpendicular to AC.
Lets prove DB and DC are congruent (that is point D is equidistant from sides of an angle â BAC
Proof
Consider triangles ΔADB and ΔADC
Both are right angle, â ABD= â ACD=90 degree
They have congruent acute angle â BAD and â CAD( since AD is angle bisector)
They share hypotenuse AD
therefore these right angle are congruent by two angle and sides and, therefore, their sides DB and DC are congruent too, as luing across congruent angles</span>
We can factor a -2 and an x^2 out of this using GCF.
<h3><u>-2x^2(x - 3) is what we're left with, and is the fully factored form.</u></h3>
Question 1 - the first choice is right
Question 2- the first choice also
Answer:
f−1(x)=√x+123,−√x+123
Step-by-step explanation: