<span>All the information we have are the probabilities, and what we need is the lowest number: so let's choose the smallest probability among the numbers: 0.0065%, B 0.0037%,C 0.0108%,D 0.0029%, E 0.0145%. The smallest of the numbers is 0.0029% -it starts with two 00s and the number that follows, 2, is smaller than all there others - so the smallest probability is in option D - and the model would be the corresponding model (but we're missing some information here) </span>
Answer:
184 cm²
Step-by-step explanation:
Surface area of the rectangular box is expressed as S = 2(LW+LH+WH)
L is the length of the box = 90 cm
W is the width of the box = 50 cm
H is the height of the box= 90 cm
If there are error of at most 0.2 cm in each measurement, then the total surface area using differential estimate will be expressed as shown;
S = 2{(LdW+WdL) + (LdH+HdL) + (WdH+HdW)
Note that dL = dW = dH = 0.2 cm
Substituting the given values into the formula to estimate the maximum error in calculating the surface area of the box
S = 2{(90(0.2)+50(0.2)) + (90(0.2)+90(0.2)) + (50(0.2)+90(0.2))
S = 2{18+10+18+18+10+18}
S = 2(92)
S = 184 cm²
Hence, the maximum error in calculating the surface area of the box is 184cm²
Answer:
It’s A
Step-by-step explanation:
This is a linear function. Let diameter (inches) be x, circumference (inches) be y, observe that the value of y/x is always 3.14. For example, 15.7/5=31.4/10=...=3.14. Therefore, this is not only a function (one to one correspondence from x to y), it's also a linear function that can be represented as y=3.14x.
Answer:
Option (1)
Step-by-step explanation:
From the picture attached,
Triangle CAB is a right triangle.
Therefore, m∠1 = 90°
Similarly, m∠ACD = 90°
m∠ACD = m∠ACB + m∠BCD = 90°
= m∠3 + m∠4 = 90°
Since m∠4 = 35°,
m∠3 + 35° = 90°
m∠3 = 90° - 35°
= 55°
In the triangle ABC,
m∠ACB + m∠CBA + m∠BAC = 180° [Property of a triangle]
m∠3 + m∠2 + m∠1 = 180°
55° + m∠2 + 90° = 180°
m∠2 + 145° = 180°
m∠2 = 180° - 145°
= 35°
Since, AB║CD and BC is a transverse,
Therefore, m∠2 = m∠4 = 35° [Alternate interior angles]
Option (1) is the correct option.