Answer:
Twice as much.
Explanation:
That's because the freezing point depression depends on the total number of solute particles.
C₆H₁₂O₆(s) ⟶ C₆H₁₂O₆(aq)
0.01 mol of C₆H₁₂O₆ gives 0.01 mol of solute particles.
NaCl(s) ⟶ Na⁺(aq) + Cl⁻(aq)
1 mol of NaCl gives 0.01 mol of Na⁺(aq) and 0.01 mol of Cl⁻(aq).
That's 0.02 mol of particles, so the freezing point depression of 0.01 mol·L⁻¹ NaCl will be twice that of 0.01 mol·L⁻¹ C₆H₁₂O₆.
Answer:
Empirical formula = C₃S₂
Explanation:
Given data:
Mass of carbon = 44.0 mg (44/1000 = 0.044 g)
Mass of sulfur = 122 mg - 44.0 mg = 78 mg = 78/1000 = 0.078 g)
Empirical formula = ?
Solution:
First of all we will calculate the number of moles.
Number of moles of carbon = mass / molar mass
Number of moles of carbon = 0.044 g/ 12.01 g/mol
Number of moles of carbon = 0.0037 mol
Number of moles of sulfur:
Number of moles = mass / molar mass
Number of moles = 0.078 g/ 32,066 g/mol
Number of moles = 0.0024 mol
Now we will compare the moles:
C : S
0.0037/0.0024 : 0.0024/0.0024
1.5 : 1
C : S = 2(1.5 : 1)
C : S = 3 : 2
Empirical formula = C₃S₂
Question: if heat is removed from the system how will the reactions shift to reach equilibrium again
Answer: lowering the temperature will make it shift to equilibrium
Explanation: A reaction that releases heat while you have a reaction that absorbs heat
question answered by
(jacemorris04)