Nitrous acid<span> dissociates as follows:
</span>
HNO₂(s) ⇄ H⁺(aq) + NO₂⁻(aq)
According to the equation, an acid constant has the following form:
Ka = [H⁺] × [NO₂⁻ ] / [HNO₂]
From pH, we can calculate the concentration of H⁺ and NO₂⁻:
[H⁺] = 10^-pH = 10^-2.63 = 0.00234 M = [NO₂⁻]
Now, the acid constant can be calculated:
Ka = 0.00234 x 0.00234 / 0.015 = 3.66 x 10⁻⁴
And finally,
pKa = -log Ka = 3.44
Answer:
197mL of 0,506M HCl
Explanation:
The reaction of HCl + BaCO₃ is:
BaCO₃(s) + 2HCl → BaCl₂(aq) + CO₂ + H₂O.
The moles of BaCO₃ in 9,85 g are:
9,85 g of BaCO₃ ×
= <em>0,0499 moles of BaCO₃</em>
As 1 mol of BaCO₃ reacts with two moles of HCl, for a complete reaction of BaCO₃ to dissolve this compound in water you need:
0,0499 moles of BaCO₃ ×
=<em> 0,0998 moles of HCl</em>
If you have a 0,506M HCl, you need to add:
0,0998 moles of HCl×
= 0,197 L ≡ 197mL
I hope it helps!
Answer:
7.2
Explanation:
you first have to find the number of moles of nitrogen dioxide by using the number of moles for calcium nitrate and the mole to mole ratios
number of moles of calcium nitrate=mass/mm
=16.4/102
=0.16g/mol
then you use the mole to mole ratios
2 : 4
0.16: x
2x/2=0.64/2
x=0.32g/moles of nitrogen dioxide
then you use the formula for the volume
v=22.4n
=22.4×0.32
=7.2
I hope this helps
Answer:b
Explanation:
I honestly don’t know if this I right but that would be my guess
Answer:
B: Inserting a gene from a flounder into salmon DNA to produce antifreeze proteins.
Explanation:
Hope this helps.