Answer:One mole of HBr has 6.02 x 1
0
23
molecules of HBr.
1 mole of HBr = 6.02 x 1
0
23
molecules of HBr.-----(a)
X mole of HBr has 1.21 x
10
24
molecules of HBr.
X mole of HBr = 1.21 x
10
24
molecules of HBr------(b)
Taking ratio of (a) and (b)
X / 1 = 1.21 x
10
24
/ 6.02 x 1
0
23
X= 2.009 moles.
Explanation:
Answer:
Explanation:
From the given information:
The equation for the reaction can be represented as:

The I.C.E table can be represented as:
2SO₂ O₂ 2SO₃
Initial: 14 2.6 0
Change: -2x -x +2x
Equilibrium: 14 - 2x 2.6 - x 2x
However, Since the amount of sulfur trioxide gas to be 1.6 mol.
SO₃ = 2x,
then x = 1.6/2
x = 0.8 mol
For 2SO₂; we have 14 - 2x
= 14 - 2(0.8)
= 14 - 1.6
= 12.4 mol
For O₂; we have 2.6 - x
= 2.6 - 1.6
= 1.0 mol
Thus;
[SO₂] = moles / volume = ( 12.4/50) = 0.248 M ,
[O₂] = 1/50 = 0.02 M ,
[SO₃] = 1.6/50 = 0.032 M
Kc = [SO₃]² / [SO₂]² [O₂]
= ( 0.032²) / ( 0.248² x 0.02)
= 0.8325
Recall that; the equilibrium constant for the reaction
= 0.8325;
If we want to find:

Then:


Since no temperature is given to use in the question, it will be impossible to find the final temperature of the mixture.
The air molecules in the compressions of the second wave are denser, so the sound is louder.
<h3>What is a sound wave?</h3>
Sound waves are longitudinal waves that travel through a medium like air or water.
In a closed room, Noah and Nina are sitting 15 m apart.
As Noah says the same sentence twice, Nina does not hear the sound the first time but she does hear the sentence the second time.
This happens as the air molecules in the compressions of the second wave are denser. As a result, the sound is louder.
The correct option is ''The air molecules in the compressions of the second wave are denser, so the sound is louder''.
Learn more about the sound wave here:
brainly.com/question/1554319
#SPJ1
Answer:
No, tobacco companies do not reuse tobacco in their cigarettes, I also did some extra research to make sure I wasn’t giving a false answer
Thanks!
Answer:
See explanation
Explanation:
The oxides or hydrides are formed by exchange of valency between the two atoms involved. The group of the atom bonded to oxygen or hydrogen in the binary compound can be deduced by considering the subscript attached to the oxygen or hydrogen atom.
Now let us take the journey;
R2O3- refers to an oxide of a group 13 element, eg Al2O3
R2O - refers to an oxide of group a group 1 element e.gNa2O
RO2 - refers to an oxide of a group 14, 15 or 16 element such as CO2, NO2 or SO2
RH2 - refers to the hydride of a group 12 element Eg CaH2
R2O7 - refers to an oxide of a group 17 element E.g Cl2O7
RH3- refers to a hydride of a group 13 element E.g AlH3